scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Food Science and Technology-mysore in 2019"


Journal ArticleDOI
TL;DR: Different factors effecting on bioactive peptide structures, biological and functional properties such as antihypertensive, antioxidative, hypocholesterolemic, water-holding capacity, foaming capacity, emulsifying properties and solubility are focused on.
Abstract: The presence of bioactive peptides has already been reported in many foods such as milk, fermented products, plant and marine proteins. Bioactive peptides are sequences between 2 and 20 amino acids that can inhibit chronic diseases by modulating and improving physiological functions, so these peptides contribute in holding the consumer health. Also, bioactive peptides can affect pro-health or functional properties of food products. Fractionation of the protein hydrolysate revealed a direct relationship between their structure and functional activity. So, this review focuses on different factors effecting on bioactive peptide structures, biological and functional properties such as antihypertensive, antioxidative, hypocholesterolemic, water-holding capacity, foaming capacity, emulsifying properties and solubility. Also, this review looks at the identified bioactive peptides from food protein sources as potential ingredients of health promoting functional foods.

214 citations


Journal ArticleDOI
TL;DR: This article aimed to review composition, structure–function relationship and current applications of different pulse proteins in the food industry.
Abstract: Pulses are the second most important source of food for humans after cereals. They hold an important position in human nutrition. They are rich source of proteins, complex carbohydrates, essential vitamins, minerals and phytochemicals and are low in lipids. Pulses are also considered the most suitable for preparing protein ingredients (concentrates and isolates) because of their high protein content, wide acceptability and low cost. In addition, pulse proteins exhibit functional properties (foaming and emulsification, water and fat absorption and gelation) as well as nutraceutical/health benefiting-properties which makes them healthier and low cost alternative to conventional protein sources like soy, wheat and animals. Proteins from different pulses (beans, peas, lentils, cowpeas, chickpeas, pigeon peas, etc.) differ in their composition and structure hence for finished product suitability. Therefore, this article aimed to review composition, structure–function relationship and current applications of different pulse proteins in the food industry.

118 citations


Journal ArticleDOI
TL;DR: This review article aims at discussing in detail the use of paper and paper based packaging materials for food applications and painting a wide picture of various health and environmental issues related to the usage of paper-based packaging material in food industry.
Abstract: Pulp and paper industry is one of the major sector in every country of the globe contributing not only to Gross Domestic Product but surprisingly to environmental pollution and health hazards also. Paper and paperboard based material is the one of the earliest and largest used packaging form for food products like milk and milk based products, beverages, dry powders, confectionary, bakery products etc. owing to its eco-friendly hallmark. Various toxic chemicals like printing inks, phthalates, surfactants, bleaching agents, hydrocarbons etc. are incorporated in the paper during its development process which leaches into the food chain during paper production, food consumption and recycling through water discharges. Recycling is considered the best option for replenishing the loss to environment but paper can be recycled maximum six to seven times and paper industry waste is very diverse in nature and composition. Various paper disposal methods like incineration, landfilling, pyrolysis and composting are available but their process optimization becomes a barrier. This review article aims at discussing in detail the use of paper and paper based packaging materials for food applications and painting a wide picture of various health and environmental issues related to the usage of paper and paper based packaging material in food industry. A brief comparison of the environmental aspects of paper production, recycling and its disposal options (incineration and land filling) had also been discussed.

92 citations


Journal ArticleDOI
TL;DR: This study demonstrated that the PEF-US could be useful for the extraction of bioactive compounds as well as improving the stability of volatile compounds.
Abstract: The aim of this paper is to investigate the combined impact of pulsed electric field (PEF) and ultrasound (US) to evaluate the physicochemical, bioactive compounds and chemical structure of almond extract. Almond extract was first treated with PEF and then with US. Combined treatment (PEF–US) has attained the highest value of total phenolics, total flavonoids, condense tannins, anthocyanin contents and antioxidant activity in DPPH, reducing power and metal chelating activity than all other treatments. Among all those treatments, there was slightly visible difference in the color. Moreover, FT-IR spectra indicate that the effect of PEF-US on almond extract did not produce new carbonyl compounds, but led to the higher concentration of these compounds. This study demonstrated that the PEF-US could be useful for the extraction of bioactive compounds as well as improving the stability of volatile compounds.

86 citations


Journal ArticleDOI
TL;DR: This review aims to provide concise evaluation of the health benefits of banana bioactive components and covers a wide range of literature conducted on the application of different parts of banana and the flour produced at various ripeness stages in the food industry.
Abstract: The past 20 years has seen rapid development of value-added food products. Using largely wasted fruit by-products has created a potential for sustainable use of these edible materials. The high levels of antioxidant activity, phenolic compounds, dietary fibres and resistant starch in banana pulp and peel have made this tropical fruit an outstanding source of nutritive ingredient for enrichment of foodstuffs. Accordingly, processing of separate banana parts into flour has been of interest by many researchers using different methods (oven drying, spouted bed drier, ultrasound, pulsed vacuum oven, microwave, spray drying and lyophilization). Regarding the high level of bioactive compounds, especially resistant starch in banana flour, the application of its flour in starchy foods provides a great opportunity for product development, even in gluten free foods. This review aims to provide concise evaluation of the health benefits of banana bioactive components and covers a wide range of literature conducted on the application of different parts of banana and the flour produced at various ripeness stages in the food industry. Of particular interest, the impact of drying methods on banana flour properties are discussed.

76 citations


Journal ArticleDOI
TL;DR: It is concluded that plant proteins can be regarded as promising ingredients to replace 80–100% meat in sausage and replacement of chicken meat by plant proteins was highly acceptable in terms of texture, odor, color and overall acceptance.
Abstract: The processed meats are classified in the first category of carcinogenic compounds due to its numerous health issues. For this reason, there is a growing interest to utilize healthy ingredients for formulation of meat-based products. The objective of this study was to replace completely and partially meat by plant proteins in sausage formulation and compare the characteristics of these novel formulae with full meat sample. The results showed that the plant proteins minimized the cooking loss and shrinkage and improved emulsion stability by creating a strong structural network in cooked emulsion. In contrast, the full meat samples had better strength/elasticity in terms of folding score (4.67 out of 5) and gel strength (2553.68 g mm) when compared to meat-reduced and meat-free samples. The sensory assessment showed that replacement of chicken meat by plant proteins was highly acceptable in terms of texture, odor, color and overall acceptance. Overall, it is concluded that plant proteins can be regarded as promising ingredients to replace 80–100% meat in sausage.

72 citations


Journal ArticleDOI
TL;DR: Propolis extracts obtained as the result of 1-day and 7-day shaking extraction followed by 20 min of ultrasound-assisted extraction (SUAE) had better antimicrobial properties as compared to those obtained by SE or UAE alone.
Abstract: The objective of the study was to compare the antimicrobial activities of ethanolic propolis extracts obtained using different extraction methods. Extraction of propolis was carried out using 70% ethanol, propolis to ethanol ratios of 1:10 and 1:5, extraction times of 1 or 7 days, and shaking extraction (SE), ultrasound-assisted extraction (UAE), and ultrasound-assisted shaking extraction (SUAE) methods. A total of 12 propolis extract lyophilizates were obtained. Samples were tested for extraction yield and for total phenol content by the Folin–Ciocalteau colourimetric method, and total flavonoid content using a spectrophotometric method. GLC/MS was used for the identification of chemical compounds in selected extract lyophilizates. Antimicrobial activity against selected bacterial and fungal species was assessed using the disk diffusion method. Propolis extracts obtained as the result of 1-day and 7-day shaking extraction followed by 20 min of ultrasound-assisted extraction (SUAE) had better antimicrobial properties as compared to those obtained by SE or UAE alone. SE and UAE gave lower extraction yields as well as lower phenol and flavonoid contents compared to SUAE. No differences were observed with regard to the qualitative composition of extracts obtained by any of the methods. It is best to obtain the extract using the combined method of 1-day extraction and 20-min sonication.

71 citations


Journal ArticleDOI
Jihong Zhang1, Shuang Ma1, Shenglong Du1, Shaoyang Chen1, Helong Sun1 
TL;DR: Results indicated that thymol and carvacrol may be used as a good alternative to conventional fungicides against B. cinerea in controlling grey molds in horticultural products.
Abstract: Botrytis cinerea is a primary pathogen causing stem and fruit rot during pre- and post-harvest. In the present study, the main purpose was to inquire into the antifungal activity and potential mechanisms of thymol and carvacrol against B. cinerea. During the experiment, the effects of thymol and carvacrol on physical and biochemical parameters of B. cinerea were evaluated. Results indicated that thymol and carvacrol exhibited strong antifungal activity against the targeted pathogen, with minimum inhibitory concentration and minimum fungicidal concentration of 65 mg/L and 100 mg/L for thymol, and 120 μL/L and 140 μL/L for carvacrol. Thymol and carvacrol changed obviously the morphology of B. cinerea hyphae by disrupting and distorting the mycelia through scanning electron microscopy. The membrane permeability of B. cinerea hyphae was prompted with the increment of two chemical agents’ concentration, as evidenced by extracellular conductivity increase, the release of cell constituent, and the decrease of extracellular pH. Furthermore, a marked decline in total lipid content of B. cinerea cells was induced by the two chemical agents, suggesting that the cell membrane structures were destructed. Therefore, present results indicated that thymol and carvacrol may be used as a good alternative to conventional fungicides against B. cinerea in controlling grey molds in horticultural products.

69 citations


Journal ArticleDOI
TL;DR: Amylose content was found to be the main genetic trait for discriminating the cassava varieties for gelatinization and pasting processes including resistant starches and cassava derived raw materials were found to have various application in baking, edible film, syrup, glucose, alcohol, and soups production.
Abstract: The cassava flours and starches have elicited great use in the food and non-food industry. The diversity in cassava genotypes accounts for differences in end-product properties, and would require characterization of cassava varieties for suitability of culinary and processing. This review showed that screening criteria of cassava cultivars end-user properties include proximate contents, amylose content, structural, swelling, gelatinization and pasting characteristics, including freeze–thaw stability properties of cassava-derived flours and starches. Literature shows that the physiochemical properties vary with genetic factors (i.e. genotype). In this review, the amylose content was found to be the main genetic trait for discriminating the cassava varieties for gelatinization and pasting processes including resistant starches. Moreover, cassava derived raw materials (flours and starches) were found to have various application in baking, edible film, syrup, glucose, alcohol, and soups production.

66 citations


Journal ArticleDOI
TL;DR: All cake batters showed shear thinning behavior and the Power Law model was found to explain the flow behavior of all batter formulations, and those with 5% OPP received the highest acceptance scores from the panelists.
Abstract: This study examined the effects of using different fiber sources [apple pomace powder (APP), carrot pomace powder (CPP) and orange pomace powder (OPP)] on batter rheology and quality characteristics of rice flour-based gluten-free cakes. Gluten-free cake batters were formulated by replacing different amounts of rice flour (0, 5, 10, and 15%) with APP, CPP, and OPP. As a control cake, batters containing no pomace powder were used. The flow behaviors and viscoelastic characteristics of dietary fiber-enriched cake batters were investigated. All cake batters showed shear thinning behavior and the Power Law model was found to explain the flow behavior of all batter formulations. Apparent viscosity, elastic modulus (G'), and viscous modulus (G″) of the batter increased with increasing pomace powder content. Furthermore, addition of pomace powder increased batter specific gravity and crumb hardness, and decreased specific volume of cakes. Cakes containing 5% OPP had similar volume index and hardness values to the control sample. The sensory properties of the cake samples were investigated concerning color, texture, appearance, flavor and overall acceptability, and those with 5% OPP received the highest acceptance scores from the panelists.

65 citations


Journal ArticleDOI
TL;DR: This study tried to bring a current perspective to antioxidants played an active role in many fields by combining the technological applications and scientific studies of antioxidants in the food and health field.
Abstract: Antioxidants have become scientifically interesting compounds due to their many benefits such as anti-aging and anti-inflammatory. Today, it is still used in many areas. In food technology, antioxidants are added to many foodstuffs in order to enrich the foods and eliminate the problems. Therefore, studies to determine the antioxidant activities of natural foods and their components are also continuing rapidly. Antioxidants have also been replaced in the encapsulation studies used for the preservation and stabilization of food components. Of course, preservation of foods is as important as their production. The latest packaging techniques for food preservation are edible films and coatings. The protective function of edible films and coatings can be improved by the addition of antioxidants. Unlike these, studies on plants and animals have been investigated in vivo in terms of how the antioxidant activity changes as a result of metabolic activities. The role of antioxidant enzymes in these studies is quite large. Many results have been found for the elimination of diseases by either in vivo or in vitro studies regarding antioxidants. Thus, the importance of antioxidants increased with the use in pharmacology, cosmetics and medicine. In this study, we tried to bring a current perspective to antioxidants played an active role in many fields by combining the technological applications and scientific studies of antioxidants. In order to further customize the issue, we have done this especially for the food and health field and we have tried to emphasize the importance of antioxidants in this way.

Journal ArticleDOI
TL;DR: The effects of gamma irradiation on various properties of starch such as physicochemical and rheological properties, functional characteristics, thermal behaviour etc. are summarized so as to make the starch suitable for various applications in different industries including the food industry.
Abstract: The world population has crossed seven billion and such a huge population has increased the pressure and considerably affects our ability to feed ourselves. It has now emerged as a new challenge for policy makers, food scientists and other associated people to make food available to everyone. To achieve this, underutilized crops/plants that act as good sources of starch need to be explored. Starch in its native form have certain limitations in its functional properties to be used for different applications. Therefore, it becomes important to explore certain technologies which could be used for modification of properties of starch. During the last decades gamma irradiation has emerged as an efficient processing technique for the modification of starch when compared to the other available processes. This review, aims to summarize the effects of gamma irradiation on various properties of starch such as physicochemical and rheological properties, functional characteristics, thermal behaviour etc. so as to make the starch suitable for various applications in different industries including the food industry.

Journal ArticleDOI
TL;DR: G gelatin-based edible films incorporated with MEO showed to be an effective way to inhibit microbial growth on the film surface.
Abstract: In this work, mint essential oil (MEO) was added into gelatin films and antifungal activity was evaluated Five concentrations of MEO (0, 006, 013, 025, 038, 050% (g/g gelatin)) were incorporated into gelatin solutions The films were prepared by casting and characterized for their barrier properties, mechanical resistance, morphology, thermal and antifungal activity The addition of oil into the solution slightly improved water vapor barrier, increased thickness and opacity, decreased transparency and modified thermal and mechanical properties of films With addition of oil above 038%, the films were effective against the growth of Botrytis cinerea and Rhizopus stolonifer, indicating an inhibitory activity Thus, gelatin-based edible films incorporated with MEO showed to be an effective way to inhibit microbial growth on the film surface

Journal ArticleDOI
TL;DR: The results displayed that antimicrobial activity against Escherichia coli and Bacillus subtilis increased as Rosemary and Aloe Vera oil percentage increases in cellulose acetate membranes, and free radical scavenger activity improved by increasing the essential oil content in the feed mixture.
Abstract: Enhancement of natural based polymeric membranes for active packaging takes the attention of scientists. Their biological activities can be obtained by adding essential oils, which are natural extracts with antimicrobial and antioxidant properties. The target of current work aimed to produce bio-active membranes from cellulose acetate incorporated with Rosemary and Aloe Vera oil. The developed film's chemical structures and morphologies were investigated using FT-IR and SEM characterization tools. The impact of essential oils incorporation on water uptake, wettability behavior, and mechanical properties were explored. The results displayed that antimicrobial activity against Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis) increased as Rosemary and Aloe Vera oil percentage increases in cellulose acetate membranes. In addition, higher activity against B. subtilis compared to E. coli was also observed. Moreover, free radical scavenger activity (ABTS and DPPH) of cellulose acetate membranes, improved by increasing the essential oil content in the feed mixture. The obtained results provide a high potential for production of an efficient food packaging membrane from cellulose acetate containing Rosemary and Aloe Vera oil.

Journal ArticleDOI
TL;DR: Mechanically extracted oil from peanuts roasted at 180 °C for 10 min improves oil quality characteristics and enhances oxidative stability.
Abstract: This study was designed to investigate the influence of dry air roasting (140, 160 and 180 °C for 5 and 10 min) and extraction methods (solvent and mechanical) on peanut oil quality characteristics. Oil yield, oxidative stability index (OSI), radical scavenging activity (RSA), and Maillard reaction products were increased while peroxide value (PV) and conjugated dienes were decreased in oil of peanuts roasted at 180 °C for 10 min. Oils extracted mechanically from roasted peanuts had lower PV while higher OSI and RSA than the solvent-extracted oils. The fatty acid composition of oils from roasted peanuts (at 160 and 180 °C for 10 min) changed slightly compared to unroasted peanuts. The level of 5-hydroxymethylfurfural and non-enzymatic browning index was significantly increased in oil from peanuts roasted at 180 °C for 10 min. FTIR spectra showed a slight change in peak intensities with no observed peak shift in oils extracted from peanuts roasted at 180 °C for 10 min. Based on the results obtained, mechanically extracted oil from peanuts roasted at 180 °C for 10 min improves oil quality characteristics and enhances oxidative stability.

Journal ArticleDOI
TL;DR: PEF treatment was effective method for inactivation of a wide range of most common food spoilage microorganisms and can be used as an effective method of food preservation, allowing prolongation of shelf life and protection of nutritional value.
Abstract: The aim of this study was to assess shelf life and nutritional value of apple juice, including the content of bioactive compounds, after pulsed electric field (PEF) treatment, taking into account different number of cycles: 4, 6, 8 (total 200, 300, and 400 pulses, respectively). Determination of vitamin C and polyphenols concentration, antioxidant activity as well as microbiological analysis were conducted immediately after PEF process and after 24, 48 and 72 h of storage. The results showed that PEF did not affect the content of bioactive compounds. PEF-treated juice did not show changes in the amount of vitamin C and total polyphenols during the storage for 72 h under refrigeration. PEF treatment was effective method for inactivation of a wide range of most common food spoilage microorganisms. PEF process can be used as an effective method of food preservation, allowing prolongation of shelf life and protection of nutritional value. This brings new opportunities for obtaining safe, healthy and nutritious food.

Journal ArticleDOI
TL;DR: This review highlights the various technological interventions and application of appropriate processing techniques to process cereal bran for the isolation of functional food ingredient and thus utilizing the nutritious by-product of cereal processing industry.
Abstract: Cereal is a staple food and major nutrition source throughout the world. The cereal bran obtained from milling as by-product contains multiple benefits and health-promoting components such as dietary fiber, minerals, vitamins, polyphenols, and phytosterols. However, these by-products are usually undervalued and used in animal feed. To increase the functional and food value, processing techniques linked to improving nutritional characteristics, sensory properties and reducing the inhibitory factors have been developed. These processing techniques include mechanical, enzymatic and thermal processing. It aims to improve the functional properties, enhance the extractability of beneficial food ingredients, reduce the complex structure of the bran and improve solubility, decrease the content of inhibitory factors and improve the bio-accessibility of micronutrients. This review highlights the various technological interventions and application of appropriate processing techniques to process cereal bran for the isolation of functional food ingredient and thus utilizing the nutritious by-product of cereal processing industry.

Journal ArticleDOI
TL;DR: Overall results clearly indicate that MAE is the best suited method for extraction in comparison to UAE and CSE for extraction of phenolic compounds from black carrot pomace.
Abstract: The present study compares three methods viz. microwave assisted extraction (MAE), ultrasonic-assisted extraction (UAE) and conventional solvent extraction (CSE) for extraction of phenolic compounds from black carrot pomace (BCP). BCP is the major by-product generated during processing and poses big disposal problem. Box–Behnken design using response surface methodology was employed to investigate and optimize the MAE of phenolics, antioxidant activity and colour density from BCP. The conditions for maximum recovery of polyphenolics were: microwave power (348.07 W), extraction time (9.8 min), solvent–solid ratio (19.3 mL/g) and ethanol concentration (19.8%). Under these conditions, the extract contained total phenolic content of 264.9 ± 10.02 mg gallic acid equivalents (GAE)/100 mL, antioxidant capacity (AOC) of 13.14 ± 1.05 µmol Trolox equivalents (TE)/mL and colour density of 68.63 ± 5.40 units. The total anthocyanin content at optimized condition was 753.40 ± 31.6 mg/L with low % polymeric colour of 7.40 ± 0.42. At optimized conditions, MAE yielded higher colour density (68.63 ± 5.40), polyphenolic content (264.9 ± 10.025 mg GAE/100 mL) and AOC (13.14 ± 1.05 µmol TE/mL) in a short time as compared to UAE and CSE. Overall results clearly indicate that MAE is the best suited method for extraction in comparison to UAE and CSE. The phenolic rich extract can be used as an effective functional ingredient in foods.

Journal ArticleDOI
TL;DR: This review deals with significance of CPE method and their potential green applications in food processing.
Abstract: Recently, a novel technique for extraction of functional thermally sensitive bioactive components from food has been developed due to its green efficacy (no toxic chemicals) and cost effectiveness. Cloud point extraction (CPE) is one of the such best alternative techniques that can be used for extraction of wide range of organic and inorganic components using green surfactants. It is a simple, rapid and inexpensive extraction technique which involves clustering of non-ionic surfactant monomers to form a hydrophobic core (micelle), which then entraps the hydrophobic bioactive compounds within it. CPE can be applied for extraction of bioactives from food processing waste as well as separation and purification of proteins. Besides that, research has received special attention on sample preparation for analysis of food constituents in the last decade. The scope of CPE is very vast in these sectors because of the advantages of CPE over other methods. This review deals with significance of CPE method and their potential green applications in food processing.

Journal ArticleDOI
TL;DR: PAW can be very effective to improve microbiological safety of chicken breasts with resulting slight changes to the sensory qualities and synergistic treatment ofPAW with other non-thermal technologies should be well investigated in order to improve inactivation efficacy of PAW.
Abstract: The aim of this study was to examine the effectiveness of plasma-activated water (PAW) for inactivating Pseudomonas deceptionensis CM2 on chicken breasts. Sterile distilled water (SDW) was activated by gliding arc discharge plasma for 60 s, which was defined as PAW60. The chicken breast samples inoculated P. deceptionensis CM2 were dipped in PAW60 or SDW for the indicated time intervals, respectively. After the treatment of PAW60 for 12 min, the population of P. deceptionensis CM2 on chicken breast was significantly reduced by 1.05 log10 CFU/g (p 0.05). As compared with SDW, PAW60 caused no significant changes in the texture characteristics (e.g. hardness, springiness, cohesiveness and gumminess) and sensory properties (e.g. appearance, color, odor, texture, acceptability). Thus, PAW can be very effective to improve microbiological safety of chicken breasts with resulting slight changes to the sensory qualities. This synergistic treatment of PAW with other non-thermal technologies should be well investigated in order to improve inactivation efficacy of PAW.

Journal ArticleDOI
TL;DR: The proportion of malvidin-glucosides and acylated anthocyanins increased with time of storage, with a concomitant decrease in proportion of petunidin, delphinidin and peonidin derivatives.
Abstract: This article describes the evaluation of the anthocyanins stability in yogurts with strawberry, sour cherry, and blueberry fruit preparation during 8-week storage period under refrigerated condition. The differences in anthocyanin degradation rate and color changes between stirred yogurts and fruit-on-the-bottom yogurts (fruit preparation was on-the-bottom of package) were compared. Anthocyanin content in fruit yogurts showed a significant decreased during the storage, especially for the first 2 weeks. There were differences in the rate of pigment degradation between yogurt obtained from a different species of fruit. The half-life of the pigments in stirred yogurt with the preparation of strawberry, sour cherry, and blueberry was found to be 5.5, 6.7, and 19.0 weeks, respectively. The addition of fruit preparation on the bottom of yogurt could be used to reduce the pigment degradation during storage. The half-life of anthocyanin in fruit-on-the-bottom yogurts was 39–63% higher than in the blending samples. A significant alteration in the pigment profile during storage of blueberry yoghurt was observed. The proportion of malvidin-glucosides and acylated anthocyanins increased with time of storage, with a concomitant decrease in proportion of petunidin, delphinidin and peonidin derivatives.

Journal ArticleDOI
TL;DR: The aim of the present study was to optimize the microwave-assisted extraction of bioactive phenolic compounds from onion peel wastes employing ChCl:Urea:H2O deep eutectic solvent.
Abstract: Valorization of onion peel waste, considered to be a rich source of polyphenolic compounds, by employing green extraction techniques is the need of the hour. The aim of the present study was to optimize the microwave-assisted extraction of bioactive phenolic compounds from onion peel wastes employing ChCl:Urea:H2O deep eutectic solvent. Microwave power (100–200–300 W), time (5–15–25 min) and liquid to solid ratio (40:1–50:1–60:1) were studied as the major parameters affecting the extraction efficiency. A Box–Behnken design was adopted including 17 experiments with five centre points. The optimum conditions determined were 100 W microwave power, 15.03 min irradiation time and 54.97 mL g−1 liquid to solid ratio. Under the MAE optimized conditions, the recovery of TPC and FRAP were 80.45 (mg GAE g−1 dw) and 636.18 (µmol AAE g−1 dw), respectively. Morphology of onion peels before and after DES extraction were also studied to gain an insight in the effect of microwave irradiations on the biomass.

Journal ArticleDOI
TL;DR: Com composite films with CA–starch/gelatin of the ratio (4:1) revealed excellent functional properties and broadened the potential applications in the food packaging.
Abstract: In this work, citric acid (CA) modified starch/gelatin composite films were prepared by mixing modified starch and gelatin in different proportions (1:0, 1:1, 1:4, 4:1 and 0:1). Blending of chemically modified starch with food grade CA and gelatin as second polymers were studied as a new and novel approach for fabrication of eco-friendly composite films with excellent packaging properties. Taking considerations of improvement in functional properties of the films, a series of starch films were derived using CA–starch and gelatin using solution casting approach. Influence of CA (0.5%, 1%, 3%, 5% and 7% w/w of total starch) on functional properties (moisture content, solubility, swelling index, moisture migration rate, moisture absorption, opacity and mechanical properties) were studied. FTIR and SEM analysis were utilized to characterize the interaction between the starch chains and surface morphology of films. Findings revealed that functional properties (aqueous solubility, swelling index, and moisture barrier properties) significantly (p < 0.05) improved as CA content increased. Composite films with CA–starch/gelatin of the ratio (4:1) revealed excellent functional properties. FTIR spectra illustrated strong interaction between the starch chains in the starch films. SEM analysis showed that gelatin exhibited good compatibility in the composite films. Therefore obtained composite films possessed a homogenious, dense and compact networks. In conclusion, CA and gelatin made better starch film properties and broadened the potential applications in the food packaging.

Journal ArticleDOI
TL;DR: Investigation of the effects of the microwave-assisted extraction on the hempseed oil yield, oxidation stability, and antioxidant activity showed that both profiles are likely influenced mostly by the triglyceride compositions and crystals structure.
Abstract: This work aimed to investigate the effects of the microwave-assisted extraction (MAE) on the hempseed (Cannabis sativa L.) oil yield, oxidation stability, and antioxidant activity. Power (300, 450, and 600 W) and time (5, 10, and 15 min) were independent variables while oil extraction yield, peroxide value (PV), p-anisidine value (AV), TOTOX value (TV), and DPPH scavenging activity were considered as dependent ones. Optimization was conducted by response surface methodology where the optimum point was 450 W and 7.19 min. In this point, the extraction yield obtained 33.91% w/w and the oil showed acceptable oxidation quality (PV of 2.5 meq/kg, AV of 0.67, and TV of 5.67) and antioxidant activity with the IC50 value of 30.82 mg/mL. The Soxhlet extraction (SE) method was carried out to be compared with MAE. It showed relatively higher oil extraction yield (37.93% w/w) but lower oil oxidation stability with PV of 6.4 meq/kg, AV of 3.69, TV of 16.49, and higher amount of IC50 32.47 mg/mL which showed lower antioxidant activity. Any significant difference between fatty acid compositions was not observed with the dominant amounts of linoleic acid and α-linolenic acid. Also, the tocopherol contents and thermal properties were studied by HPLC and DSC, respectively. MAE showed higher total tocopherol content (929.67 mg/kg) than SE (832.61 mg/kg) and γ-tocopherol was dominant. Moreover, DSC analysis showed that both profiles (crystallization and melting transitions) are likely influenced mostly by the triglyceride compositions and crystals structure.

Journal ArticleDOI
TL;DR: This new technique for lycopene extraction, using a HEM as extraction solvent in replacement of hazardous organic solvents, and tomato pomace as source material, represents a viable and more sustainable approach for obtaining a high value-added bioactive compound, and can contribute towards the development of greener extraction processes.
Abstract: Lycopene, a non-polar antioxidant compound with important effects on human health and wide commercial applications, was extracted from tomato processing wastes using innovative hydrophobic eutectic mixtures (HEMs) replacing traditional organic solvents. HEMs were prepared using DL-menthol as hydrogen-bond acceptor (HBA) and lactic acid as hydrogen-bond donor (HBD), and the ultrasound-assisted extraction (UAE) was optimized using a Box–Behnken design to evaluate extraction conditions: extraction temperature (°C), molar ratio of eutectic mixture (moles HBA: mol HBD), solvent to sample ratio (volume to mass, mL/g), and extraction time (min), with lycopene extraction yield (µg/g d.w.) as the response variable. Optimization of parameters was performed using response surface methodology, and the optimized extraction conditions were determined to be 70 °C, 8:1 mol HBA/mol HBD, 120 mL/g solvent: sample, and 10 min. The experimental optimal yield was 1446.6 µg/g, in agreement with the predicted optimal yield, indicating the validity of the model. This new technique for lycopene extraction, using a HEM as extraction solvent in replacement of hazardous organic solvents, and tomato pomace as source material, represents a viable and more sustainable approach for obtaining a high value-added bioactive compound, and can contribute towards the development of greener extraction processes.

Journal ArticleDOI
TL;DR: It is concluded that method and region of honey collection, duration of storage and processing all have major effects on the quality of acacia honey.
Abstract: This study investigated the effect of different treatments (centrifugation and filtration; heating; adulteration with sugar syrups, and storage) and collection variables (year and region of the country) on the physicochemical properties of 44 Hungarian acacia honeys. The characteristics measured were diastase activity, hydroxyl-methyl-furfural (HMF), total phenolic content (TPC), electrical conductivity (EC), colour, pH, proline, moisture, sucrose, fructose and glucose contents, and concentration of eleven elements (As, B, Cd, Cr, Fe, K, Mg, Na, P, S, Zn). Centrifugation and filtration reduced the concentration of all examined parameters, except for moisture. Heating reduced diastase activity, proline and total phenolic concentrations and increased HMF concentration and colour value. Adulteration with sugar syrups had adverse effects on the diastase activity, proline, moisture and sugar concentrations, EC, colour and pH. Two-year storage reduced diastase activity, HMF, proline and TPC concentrations and increased sucrose concentrations. The collecting area influenced Na, Fe and As concentration, but the collecting year had no effect on the examined parameters. It is concluded that method and region of honey collection, duration of storage and processing all have major effects on the quality of acacia honey. Applied sugar syrup, although it affected honey quality, would be difficult to detect in the finished product.

Journal ArticleDOI
TL;DR: The pressing need for protein supply growth gives rise to alternative protein sources, such as insect proteins, which had similar protein quality as the pulse proteins and had higher solubility at pH 5.0 but were much less soluble at pH 7.0.
Abstract: The pressing need for protein supply growth gives rise to alternative protein sources, such as insect proteins. Commercial cricket and mealworm powders were examined for their protein quality, surface charge and functional attributes. Both insect powders had similar proximate compositions with protein and ash contents of ~ 66% db (dry weight basis) and 5% db, respectively, however cricket powder contained more lipid (16.1%, db) than mealworm powder (13.7%, db). Mealworm protein had an amino acid score of 0.71 and was first limiting in lysine, whereas cricket protein was first limiting in tryptophan with an amino acid score of 0.85. In vitro protein digestibility values of 75.7% and 76.2%, and in vitro protein digestibility corrected amino acid scores of 0.54 and 0.65, were obtained for mealworm and cricket powders, respectively. Zeta potential measurements gave isoelectric points near pH 3.9 for both insect powders. Mealworm and cricket powders had water hydration capacities of 1.62 g/g and 1.76 g/g, respectively, and oil holding capacities of 1.58 g/g and 1.42 g/g, respectively. Both insect proteins had low solubility (22–30%) at all pHs (3.0, 5.0, and 7.0) measured. Cricket powder had a foaming capacity of 82% and foam stability of 86%, whereas mealworm powder was non-foaming. Values for commercial pea and faba bean protein concentrates were reported for comparative purposes. The insect proteins had similar protein quality as the pulse proteins and had higher solubility at pH 5.0 but were much less soluble at pH 7.0.

Journal ArticleDOI
TL;DR: The microencapsulation by emulsion and internal gelation offers an effective way to protect microbes in adverse in vitro and in vivo conditions and is promising for the large-scale production of probiotics micro Encapsulation.
Abstract: Efficient microencapsulation of probiotics by most existing methods is limited by low throughput. In this work, Saccharomyces boulardii and Enterococcus faecium were microencapsulated by a method based on emulsion and internal gelation. The growth and survival of microencapsulated microbes under different stressors were investigated using free non-encapsulated ones as a control. The results showed that the prepared micro-beads by emulsion and internal gelation exhibited a spherical and smooth shape, with sizes between 300 and 500 μm. Both S. boulardii and E. faecium grew well and survived better when encapsulated in micro-beads. The survival rates were increased 25% and 40% for microencapsulated S. boulardii and E. faecium respectively when compared with non-encapsulated controls under high temperature and high humidity. The increases of survival rates were 60% for microencapsulated S. boulardii and 25% for E. faecium in simulated gastric juice. And the increases were 15% and 20% respectively when the survival rates of the microencapsulated S. boulardii and E. faecium were determined in simulated intestinal juice. The microencapsulation by emulsion and internal gelation offers an effective way to protect microbes in adverse in vitro and in vivo conditions and is promising for the large-scale production of probiotics microencapsulation.

Journal ArticleDOI
TL;DR: Results show that the mango seed kernel is a viable source of bioactive compounds which can be recovered with water–ethanol binary solvent systems.
Abstract: Mango seed kernel, a by-product of the processing industry, can be valorized as a potential source of bioactive compounds Binary mixtures of ethanol and water, used in solid–liquid extraction (SLE), have drawn interest as an effective means of recovering phytochemicals from plant materials because these solvents can be used in food applications and their synergistic effect makes them a superior solvent over their pure counterparts Total phenolic content (TPC) and HPLC chromatograms of each ethanolic extract revealed that ethanol concentration had a significant effect on phenolic compound recovery, wherein, TPC of mango kernel varied from 1819 to 10168 mg gallic acid equivalence (GAE) per gram of sample Subsequently, the antioxidant activities (AOAc) of the extracts, measured by scavenging activities with the DPPH+ (1,1-diphenyl-2-picrylhydrazyl) radical and ferric reducing antioxidant power (FRAP) assay, ranged from 819 to 8545 mmol/L and 382–5561 mmol/L Trolox equivalence, respectively The solvent containing 50% (w/w) ethanol–water had the highest TPC and exhibited the most potent reducing and radical scavenging activities With the use of an HPLC–UV/Vis, gallic acid, caffeic acid, rutin and penta-O-galloyl-β-d-glucose were identified to be present in the mango seed kernel Results show that the mango seed kernel is a viable source of bioactive compounds which can be recovered with water–ethanol binary solvent systems

Journal ArticleDOI
TL;DR: The results revealed that the primary microorganisms contributing to spontaneous fermentation of Chinese Sichuan sausages were bacteria, while eukaryotic microorganisms such as yeast scarcely contributed to fermentation.
Abstract: The microbial community diversity and succession of Chinese Sichuan sausages during the spontaneous fermentation were demonstrated using high-throughput sequencing technology. The bacterial diversity was abundant and the succession of bacterial community along the direction of Lactobacillus spp. increased and Weissella spp. decreased. While fungal diversity was single and trace fungal population was detected. The core functional microbiota were lactic acid bacteria, including Lactobacillus spp., Weissella spp. and Pediococcus spp. In initial fermentation, Weissella spp. was the dominant bacteria and its relative abundance was 49.84%, but then its relative abundance decreased to 11.96% during fermentation before recovering to 26.74% at the end of fermentation. Meanwhile, Lactobacillus spp. rose from 24.70 to 55.74% and became the dominant genus. Moreover, Pediococcus spp. increased from 0.06 to 18.05% on day 20 but then decreased to 1.89% on day 30. These results revealed that the primary microorganisms contributing to spontaneous fermentation of Chinese Sichuan sausages were bacteria, while eukaryotic microorganisms such as yeast scarcely contributed to fermentation.