scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Materials Engineering and Performance in 2016"


Journal ArticleDOI
TL;DR: In this article, the effects of ultrasonic vibration-assisted milling on important aspects such as material surface integrity, tool wear, cutting forces and fatigue resistance were investigated for Alloy 718.
Abstract: This work investigates the effects of ultrasonic vibration-assisted milling on important aspects such us material surface integrity, tool wear, cutting forces and fatigue resistance. As an alternative to natural application of ultrasonic milling in brittle materials, in this study, ultrasonics have been applied to a difficult-to-cut material, Alloy 718, very common in high-temperature applications. Results show alterations in the sub-superficial part of the material which could influence fatigue resistance of the material, as it has been observed in a fatigue test campaign of specimens obtained with the application of ultrasonic milling in comparison with another batch obtained applying conventional milling. Tool wear pattern was found to be very similar for both milling technologies, concluding the study with the analysis of cutting forces, exhibiting certain improvement in case of the application of ultrasonic milling with a more stable evolution.

102 citations


Journal ArticleDOI
TL;DR: In this article, the influence of six FDM process parameters (layer thickness, air gap, raster angle, build orientation, road width, and number of contours) on the dynamic mechanical properties of the FDM manufactured parts using the fraction factorial design was investigated.
Abstract: In fused deposition modeling (FDM) additive manufacturing process, it is often difficult to determine the actual levels of process parameters in order to achieve the best dynamic mechanical properties of FDM manufactured part This is mainly due to the large number of FDM parameters and a high degree of interaction between the parameters affecting such properties This requires a large number of experiments to be determined This paper presents a study on the influence of six FDM process parameters (layer thickness, air gap, raster angle, build orientation, road width, and number of contours) on the dynamic mechanical properties of the FDM manufactured parts using the fraction factorial design The most influential parameters were statistically obtained through the analysis of variance (ANOVA) technique, and the results indicate that the layer thickness, the air gap, and the number of contours have the largest impact on dynamic mechanical properties The optimal parameters for maximum dynamic mechanical properties were found to be layer thickness of 03302 mm, air gap of 000 mm, raster angle of 00°, build orientation of 00°, road width of 04572 mm, and 10 contours Finally, a confirmation experiment was performed using optimized levels of process parameters, which showed good fit with the estimated values

97 citations


Journal ArticleDOI
TL;DR: In this article, a special heat treatment cycle (step quenching) was used to produce a dual-phase microstructure in low carbon steel, which has a positive effect on formability.
Abstract: In the present study, a special heat treatment cycle (step quenching) was used to produce a dual-phase (DP) microstructure in low carbon steel. By producing this DP microstructure, the mechanical properties of the investigated steel such as yield stress, tensile strength, and Vickers hardness were increased 14, 55, and 38%, respectively. In order to investigate the effect of heat treatment on formability of the steel, Nakazima forming test was applied and subsequently finite element base modeling was used to predict the outcome on forming limit diagrams. The results show that the DP microstructure also has a positive effect on formability. The results of finite element simulations are in a good agreement with those obtained by the experimental test.

91 citations


Journal ArticleDOI
TL;DR: In this article, the effect of postwelding heat treatment (PWHT) and weld groove designs on the overall microstructure and mechanical properties of P91 steel pipe welds produced by the gas tungsten arc welding process was studied.
Abstract: The martensitic creep-resistant steel designated as ASTM A335 for plate and as P91 for pipe is primarily used for high-temperature and high-pressure applications in steam power plants due to its excellent high-temperature properties such as high creep strength, high thermal conductivity, low thermal expansion, and so on. However, in the case of welded joints of such steels, the presence of an inter-critical heat-affected zone (IC-HAZ) can cause the joint to have lower creep strength than the base metal. In the present study, the effect of post-welding heat treatment (PWHT) and weld groove designs on the overall microstructure and mechanical properties of P91 steel pipe welds produced by the gas tungsten arc welding process was studied. Various regions of welded joints were characterized in detail for hardness and metallographic and tensile properties. Sub-size tensile samples were also tested to evaluate the mechanical properties of the weld metal and heat-affected zone (HAZ) with respect to PWHT. After PWHT, a homogenous microstructure was observed in the HAZ and tensile test fracture samples revealed shifting of the fracture location from the IC-HAZ to the fine-grained heat-affected zone. Before PWHT, the conventional V-grooved welded joints exhibited higher tensile strength compared to the narrow-grooved joints. However, after PWHT, both narrow- and V-grooved joints exhibited similar strength. Fractography of the samples indicates the presence of carbide precipitates such as Cr23C6, VC, and NbC on the fracture surface.

86 citations


Journal ArticleDOI
Lihui Tian1, Wei Xiong1, Chuan Liu1, Sheng Lu1, Ming Fu1 
TL;DR: In this paper, the phase structure of the initial powder, the feedstock powder and the as-sprayed coating was examined by an x-ray diffractometer and the surface morphology of the feed stock powder and microstructure of the coating were analyzed by field emission scanning electron microscopy and energy-dispersive spectroscopy.
Abstract: Due to the advantages such as high strength, high hardness and good wear resistance, high-entropy alloys (HEAs) attracted more and more attentions in recent decades. However, most reports on HEAs were limited to bulk materials. Although a few of studies on atmospheric plasma-sprayed (APS) HEA coatings were carried out, the wear behavior, especially the high-temperature wear behavior of those coatings has not been investigated till now. Therefore, in this study, APS was employed to deposit AlCoCrFeNiTi high-entropy alloy coating using mechanically alloyed AlCoCrFeNiTi powder as the feedstock. The phase structure of the initial powder, the feedstock powder and the as-sprayed coating was examined by an x-ray diffractometer. The surface morphology of the feedstock powder and the microstructure of the as-sprayed coating were analyzed by field emission scanning electron microscopy and energy-dispersive spectroscopy. The bonding strength and the microhardness of the as-sprayed coating were tested. The wear behavior of the coating at 25, 500, 700 and 900 °C was investigated by analysis of the wear surface morphology and measurements of the volume wear rate and the coefficient of friction.

82 citations


Journal ArticleDOI
TL;DR: In this article, the authors used the Zerilli-Armstrong (Z-A) model to model the dynamic flow behavior of the CoCrFeMnNi high entropy alloy, and the constitutive relationship was obtained.
Abstract: The equiatomic CoCrFeMnNi high entropy alloy, which crystallizes in the face-centered cubic (FCC) crystal structure, was prepared by the spark plasma sintering technique. Dynamic compressive tests of the CoCrFeMnNi high entropy alloy were deformed at varying strain rates ranging from 1 × 103 to 3 × 103 s−1 using a split-Hopkinson pressure bar (SHPB) system. The dynamic yield strength of the CoCrFeMnNi high entropy alloy increases with increasing strain rate. The Zerilli-Armstrong (Z-A) plastic model was applied to model the dynamic flow behavior of the CoCrFeMnNi high entropy alloy, and the constitutive relationship was obtained. Serration behavior during plastic deformation was observed in the stress-strain curves. The mechanism for serration behavior of the alloy deformed at high strain rate is proposed.

77 citations


Journal ArticleDOI
TL;DR: In this paper, the effect of high service temperature on impact toughness of P91 (X10CrMoVNb 9-1) base material, weld fusion zone, and HAZ was investigated.
Abstract: The new generation super critical thermal power plants are required to operate at enhanced thermal efficiency of over 50% to reduce the fuel consumption and environmental pollution. Creep strength-enhanced ferritic steels, commonly known as Cr-Mo alloys such as P91 (X10CrMoVNb 9-1) are such material of choice for the next generation power plants. The operating requirement of these next generation power plants is that steam temperature of around 650 °C is maintained. For such high-temperature application, creep strength of material is the primary consideration together with adequate weld heat-affected zone (HAZ) toughness. Present work deals with the effect of high service temperature on impact toughness of P91 (X10CrMoVNb 9-1) base material, weld fusion zone, and HAZ. The impact toughness of HAZ for conventional weld groove design and narrow weld groove design has been evaluated experimentally in as-welded and at different post-weld heat treatment conditions. Fractography of the impact toughness specimens of base metal, weld fusion zone, and HAZ was carried out using scanning electron microscope. The effects of heat treatment schemes on the percentage of element present at the fracture surface were also studied.

75 citations


Journal ArticleDOI
TL;DR: In this article, hole expansion tests involving the standard conical punch as well as a custom flat punch were performed to investigate formability when the hole is expanded out-of-plane (conical punch) and in-plane using the flat punch.
Abstract: The edge formability of ferritic-martensitic DP (dual-phase) and ferritic-bainitic CP (complex-phase) steels was evaluated using a hole expansion test for different edge conditions. Hole expansion tests involving the standard conical punch as well as a custom flat punch were performed to investigate formability when the hole is expanded out-of-plane (conical punch) and in-plane using the flat punch. A range of edge conditions were considered, in order to isolate the influence of a range of factors thought to influence edge formability. The results demonstrate that work hardening and void damage at the sheared edge govern formability, while the sheared surface quality plays a minor or secondary role. A comparison of the edge stretching limits of DP and CP steels demonstrates the advantages of a ferritic-bainitic microstructure for forming operations with severe local deformation as in a stretch-flanging operation. A comparison of a traditional DP780 steel with a CP steel of similar strength showed that the edge stretching limit of the CP steel was three times larger than that of the DP780.

70 citations


Journal ArticleDOI
TL;DR: In this article, the effects of electropolishing using deep eutectic solvents on the surface roughness of re-melted 316L stainless steel samples produced by the selective laser melting (SLM) powder bed fusion additive manufacturing method was described.
Abstract: This three-level three-factor full factorial study describes the effects of electropolishing using deep eutectic solvents on the surface roughness of re-melted 316L stainless steel samples produced by the selective laser melting (SLM) powder bed fusion additive manufacturing method. An improvement in the surface finish of re-melted stainless steel 316L parts was achieved by optimizing the processing parameters for a relatively environmentally friendly (‘green’) electropolishing process using a Choline Chloride ionic electrolyte. The results show that further improvement of the response value-average surface roughness (Ra) can be obtained by electropolishing after re-melting to yield a 75% improvement compared to the as-built Ra. The best Ra value was less than 0.5 μm, obtained with a potential of 4 V, maintained for 30 min at 40 °C. Electropolishing has been shown to be effective at removing the residual oxide film formed during the re-melting process. The material dissolution during the process is not homogenous and is directed preferentially toward the iron and nickel, leaving the surface rich in chromium with potentially enhanced properties. The re-melted and polished surface of the samples gave an approximately 20% improvement in fatigue life at low stresses (approximately 570 MPa). The results of the study demonstrate that a combination of re-melting and electropolishing provides a flexible method for surface texture improvement which is capable of delivering a significant improvement in surface finish while holding the dimensional accuracy of parts within an acceptable range.

69 citations


Journal ArticleDOI
TL;DR: In this article, the authors discussed continuous corrosion assessment from a unique correlation of open circuit potential (OCP) and linear polarization resistance with rust formation on mild steel after prolong exposure in 3.5% NaCl salt fog environment.
Abstract: The present work discusses continuous corrosion assessment from a unique correlation of open circuit potential (OCP) and linear polarization resistance with rust formation on mild steel after prolong exposure in 3.5% NaCl salt fog environment. The OCP measurement and linear polarization tests were carried out of the rusted samples only without the removal of rust. It also discusses the strong influence of the composition, fraction, and morphology of the rust layers with OCP and linear polarization resistance. The rust characterization was done after the measurement of OCP and linear polarization resistance of the rusted steel samples. Therefore, monitoring of both the OCP and linear polarization resistance of the rusted mild steels coupled with rust characterization could be used for easy and dynamic assessment of the nature of corrosion.

62 citations


Journal ArticleDOI
TL;DR: In this paper, a new frictional boundary condition at the tool/workpiece interface for computational fluid dynamics (CFD) modeling of FSW was proposed, which is based on an implementation of the Coulomb friction model.
Abstract: For better application of numerical simulation in optimization and design of friction stir welding (FSW), this paper presents a new frictional boundary condition at the tool/workpiece interface for computational fluid dynamics (CFD) modeling of FSW. The proposed boundary condition is based on an implementation of the Coulomb friction model. Using the new boundary condition, the CFD simulation yields non-uniform distribution of contact state over the tool/workpiece interface, as validated by the experimental weld macrostructure. It is found that interfacial sticking state is present over large area at the tool-workpiece interface, while significant interfacial sliding occurs at the shoulder periphery, the lower part of pin side, and the periphery of pin bottom. Due to the interfacial sticking, a rotating flow zone is found under the shoulder, in which fast circular motion occurs. The diameter of the rotating flow zone is smaller than the shoulder diameter, which is attributed to the presence of the interfacial sliding at the shoulder periphery. For the simulated welding condition, the heat generation due to friction and plastic deformation makes up 54.4 and 45.6% of the total heat generation rate, respectively. The simulated temperature field is validated by the good agreement to the experimental measurements.

Journal ArticleDOI
TL;DR: In this paper, the influence of various powder-suspended dielectrics and machining parameters on various EDM characteristics of Inconel 625 (a nickel-based super alloy) is investigated.
Abstract: The current work attempts to establish the criteria for powder material selection by investigating the influence of various powder-suspended dielectrics and machining parameters on various EDM characteristics of Inconel 625 (a nickel-based super alloy) which is nowadays regularly used in aerospace, chemical, and marine industries. The powders include aluminum (Al), graphite, and silicon (Si) that have significant variation in their thermo-physical characteristics. Results showed that powder properties like electrical conductivity, thermal conductivity, density, and hardness play a significant role in changing the machining performance and the quality of the machined surface. Among the three powders, highest material removal rate was observed for graphite powder due to its high electrical and thermal conductivities. Best surface finish and least radial overcut (ROC) were attained using Si powder. Maximum microhardness was found for Si due to its low thermal conductivity and high hardness. It is followed by graphite and aluminum powders. Addition of powder to the dielectric has increased the crater diameter due to expansion of plasma channel. Powder-mixed EDM (PMEDM) was also effective in lowering the density of surface cracks with least number of cracks obtained with graphite powder. X-ray diffraction analysis indicated possible formation of metal carbides along with grain growth phenomenon of Inconel 625 after PMEDM.

Journal ArticleDOI
TL;DR: In this paper, the functional performance of manufactured components produced by typical finishing machining operations in terms of their topographical characteristics is discussed, including fatigue, friction, wear, bonding and corrosion.
Abstract: This survey overviews the functional performance of manufactured components produced by typical finishing machining operations in terms of their topographical characteristics. Surface topographies were characterized using both profile (2D) and 3D (areal) surface roughness parameters. The prediction of typical functional properties such as fatigue, friction, wear, bonding and corrosion is discussed based on appropriate surface roughness parameters. Some examples of real 3D surface topographies produced with desired functional characteristics are provided. This survey highlights technological possibilities of producing surfaces with enhanced functional properties by machining processes.

Journal ArticleDOI
TL;DR: In this paper, an important role of graphene in an increased corrosion resistance of these composite coatings was assessed, and the Voltammetric method was used for examination of the corrosion resistance.
Abstract: The research on the graphene application for the electrodeposition of nickel composite coatings was conducted. The study assessed an important role of graphene in an increased corrosion resistance of these coatings. Watts-type nickel plating bath with low concentration of nickel ions, organic addition agents, and graphene as dispersed particles were used for deposition of the composite coatings nickel-graphene. The results of investigations of composite coatings nickel-graphene deposited from the bath containing 0.33, 0.5, and 1 g/dm3 graphene and one surface-active substance were shown. The contents of particles in coatings, the surface morphology, the cross-sectional structures of the coated samples, and their thickness and the internal stresses were studied. Voltammetric method was used for examination of the corrosion resistance of samples of composite coatings in 0.5 M NaCl. The obtained results suggest that the content of incorporated graphene particles increases with an increasing amount of graphene in plating bath. The application of organic compounds was advantageous because it caused compressive stresses in the deposited coatings. All of the nickel-graphene composite layers had better corrosion resistance than the nickel coating.

Journal ArticleDOI
TL;DR: In this article, the applicability of friction stir welding to cast NAB alloy (i.e., C95800) with a thickness of 9mm has been investigated, and the joint performance was determined by conducting optical microscopy, microhardness measurements, and mechanical testing (e.g., tensile and Charpy impact tests).
Abstract: In this study, the applicability of friction stir welding to cast NAB alloy (i.e., C95800) with a thickness of 9 mm has been investigated. The joint performance was determined by conducting optical microscopy, microhardness measurements, and mechanical testing (e.g., tensile and Charpy impact tests). The effect of stir intensity on joint performance was also determined. A grain refinement (equiaxed fine grain structure) as well as evolution of a Widmanstatten structure was achieved within the stir zone of all the joints produced. Thus, all of the joints produced exhibited higher proof stress (i.e., between 512 and 616 MPa) than that of the base material, i.e., 397 MPa. On the other hand, only half of the specimens exhibited higher tensile strength values than that of the base plate (i.e., 794 MPa), whereas the other specimens displayed lower tensile strength than the base plate due to the existence of weld defects, namely cold bonding and/or tunnel defect.

Journal ArticleDOI
TL;DR: In this paper, the microstructure evolution of Al 2014 alloy subjected to cryoforging (MDF) to a cumulative strain of 1.2, 1.8, and 2.4 was investigated.
Abstract: Mechanical properties and microstructure evolution of Al 2014 alloy subjected to cryoforging (MDF) to a cumulative strain of 1.2, 1.8, and 2.4 were investigated in the present work. The deformed samples after 4 cycles at a cumulative strain of 2.4 shows the formation of ultrafine grain sizes in the range of 100-450 nm with high-angle grain boundaries as observed from TEM analysis. The tensile and hardness of the deformed sample were measured by Universal Testing machine and Vickers hardness Tester, respectively. The tests were also conducted for sample deformed at room temperature to compare with cryo-forged samples. The sample deformed at cryogenic temperature up to a cumulative strain 2.4 shows an improvement of tensile strength, hardness, and apparent fracture toughness (KQ) from 318 MPa to 470 MPa, 103HV to 171 HV, and 23.93 MPa $$\sqrt m$$ to 37.7 MPa $$\sqrt m,$$ respectively, with decrease in ductility from 18% to 6% as compared with solution-treated alloy. The cryo-forged Al 2014 alloy exhibits an increment of 7% in tensile strength, 3% in yield strength, and 3% in hardness up to cumulative true strain of 2.4 as compared to the samples forged at room temperature. The improvement in tensile properties of MDFed alloy is attributed to dislocation strengthening and grain boundary strengthening effect at both temperatures. The effective suppression of cross slip and climb at liquid nitrogen temperature improves the strength of cryo-forged sample better than that of room temperature-forged alloy.

Journal ArticleDOI
TL;DR: In this article, the microstructure of coatings, their thickness, and phase composition were characterized using scanning electron microscopy and x-ray diffraction, and the maximum coating thickness and lowest amount of porosity were obtained in a low concentration of KOH, a high concentration of Na2SiO3, and moderate concentration of Al2O3 nano-particles in the electrolyte.
Abstract: Corrosion resistance improvement of plasma electrolyte oxidation coatings on 6061 aluminum alloy in silicate electrolyte containing Al2O3 nano-particles was studied, with particular emphasis on the microstructure, coating growth, and corrosion behavior in 3.5 wt.% NaCl solution. The microstructure of coatings, their thickness, and phase composition were characterized using scanning electron microscopy and x-ray diffraction. All characterization data showed that the maximum coating thickness and lowest amount of porosity were obtained in a low concentration of KOH, a high concentration of Na2SiO3, and moderate concentration of Al2O3 nano-particles in the electrolyte. This combination describes the optimum plasma electrolytic oxidation electrolyte, which has the best conductivity and oxidizing state, as well as the highest incorporation of electrolyte components in the coating growth process. On the other hand, incorporation and co-deposition of Al2O3 nano-particles were more pronounced than SiO3 2− ions in some level of molar concentration, which is due to the higher impact of electron discharge force on the adsorption of Al2O3 nano-particles. The electrochemical results showed that the best protective behavior was obtained in the sample having a coat with the lowest porosity and highest thickness.

Journal ArticleDOI
TL;DR: In this article, the effect of different wire materials (i.e., hard brass wire, diffused wire, and zinc-coated wire) on WEDM performance characteristics such as cutting speed, surface topography, surface roughness, recast layer formation, residual stresses, and microstructural and metallurgical alterations have been investigated.
Abstract: Inconel 706 is a recently developed superalloy for aircraft application, particularly in turbine disk which is among the most critical components in the gas turbine engines. Recently, wire electrical discharge machining (WEDM) attained success in machining of gas turbine components which require complex shape profiles with high precision. To achieve the feasibility in machining of these components, the research work has been conducted on Inconel 706 superalloy using WEDM process. And, the effect of different wire materials (i.e., hard brass wire, diffused wire, and zinc-coated wire) on WEDM performance characteristics such as cutting speed, surface topography, surface roughness, recast layer formation, residual stresses, and microstructural and metallurgical alterations have been investigated. Even though, zinc-coated wire exhibits improved productivity, hard brass wire was found to be beneficial in terms of improved surface quality of the machined parts. Additionally, lower tensile residual stresses were obtained with hard brass wire. However, diffused wire has a moderate effect on productivity and surface quality. Under high discharge energy, higher elemental changes were observed and also the white layer was detected.

Journal ArticleDOI
TL;DR: In this paper, the authors used optical and electron scanning microscopy, tensile, Charpy V-notch impact and micro-hardness tests, and cyclic polarization measurements.
Abstract: In this study, dissimilar 316L austenitic stainless steel/2205 duplex stainless steel (DSS) joints were fabricated by constant and pulsed current gas tungsten arc welding process using ER2209 DSS as a filler metal. Microstructures and joint properties were characterized using optical and electron scanning microscopy, tensile, Charpy V-notch impact and micro-hardness tests, and cyclic polarization measurements. Microstructural observations confirmed the presence of chromium nitride and delta ferrite in the heat-affected zone of DSS and 316L, respectively. In addition, there was some deviation in the austenite/ferrite ratio of the surface welding pass in comparison to the root welding pass. Besides having lower pitting potential, welded joints produced by constant current gas tungsten arc welding process, consisted of some brittle sigma phase precipitates, which resulted in some impact energy reduction. The tensile tests showed high tensile strength for the weld joints in which all the specimens were broken in 316L base metal.

Journal ArticleDOI
TL;DR: In this article, the authors examined the microstructure and mechanical properties of CGP processed Cu-Zn alloy sheet and also explored homogeneity in their characteristics, and found that CGP is very effective in improving the mechanical properties.
Abstract: Severe plastic deformation (SPD) is routinely employed to modify microstructure to obtain improved mechanical properties, particularly strength. Constrained groove pressing (CGP) is one of the SPD techniques that has gained prominence recently. However, the efficacy of the method in terms of homogeneity of microstructure and properties has not been well explored. In this work, we examine the microstructure and mechanical properties of CGP processed Cu-Zn alloy sheet and also explore homogeneity in their characteristics. We found that CGP is very effective in improving the mechanical properties of the alloy. Although the reduction in grain size with the number of passes in CGP is not as huge (~38 µm in annealed sample to ~10.2 µm in 1 pass sample) as is expected from a SPD technique, but there is a drastic improvement in ultimate tensile strength (~230 to ~380 MPa) which shows the effectiveness of this process. However, when mechanical properties were examined at smaller length scale using micro-indentation technique, it was found that hardness values of CGP processed samples were non-uniform along transverse direction with a distinct sinusoidal variation. Uniaxial tensile test data also showed strong anisotropy along principal directions. The cause of this anisotropy and non-uniformity in mechanical properties was found to lie in microstructural inhomogeneity which was found to exist at the length scale of the grooves of the die.

Journal ArticleDOI
TL;DR: In this article, the microstructure changes of the Al/Ti wavy shape interface after annealing at 773 and 903 K were studied, and three stable TiAl3, TiAl, and Ti3Al and a metastable TiAl2 intermetallic phases have been formed in the state directly after explosive welding.
Abstract: The manuscript presents a close examination of the titanium and aluminum platters manufactured by explosive welding method. In particular, the microstructure changes of the Al/Ti wavy shape interface after annealing at 773 and 903 K were studied. Three stable TiAl3, TiAl, and Ti3Al and a metastable TiAl2 intermetallic phases have been formed in the state directly after explosive welding. The orientation map and TEM images obtained after explosive welding process showed very fine grains of aluminum mixed with intermetallics in the interface region between the peninsulas or islands. After annealing for 100 h the TiAl3 continuous layer was obtained; however, the layer achieved at 903 K was much wider than that obtained at 773 K. An examination of the growth kinetics at 903 K revealed that incubation time was less than 5 min. After this period, the growth was solely governed by chemical reaction.

Journal ArticleDOI
TL;DR: In this article, the microstructure, hardness, and tribological properties of aluminum-based metal matrix composites (MMCs) were investigated using a pin-on-disk apparatus on the prepared samples.
Abstract: Direct metal laser sintering (DMLS) is an additive manufacturing technique for the production of parts with complex geometry and it is especially appropriate for structural applications in aircraft and automotive industries. Aluminum-based metal matrix composites (MMCs) are promising materials for these applications because they are lightweight, ductile, and have a good strength-to-weight ratio This paper presents an investigation of microstructure, hardness, and tribological properties of AlSi10Mg alloy and AlSi10Mg alloy/TiB2 composites prepared by DMLS. MMCs were realized with two different compositions: 10% wt. of microsize TiB2, 1% wt. of nanosize TiB2. Wear tests were performed using a pin-on-disk apparatus on the prepared samples. Performances of AlSi10Mg samples manufactured by DMLS were also compared with the results obtained on AlSi10Mg alloy samples made by casting. It was found that the composites displayed a lower coefficient of friction (COF), but in the case of microsize TiB2 reinforcement the wear rate was higher than with nanosize reinforcements and aluminum alloy without reinforcement. AlSi10Mg obtained by DMLS showed a higher COF than AlSi10Mg obtained by casting, but the wear rate was higher in the latter case.

Journal ArticleDOI
Abstract: The effect of shallow cryogenic treatment (SCT) on the microstructure and mechanical properties of Al7075-T6 is investigated in the present work. The alloy was subjected to shallow CT at −80 °C for 72 h. Mechanical tests such as Vickers hardness test, tensile, and fatigue tests were performed on both native and treated samples. It was observed that the mechanical properties such as hardness, yield strength, and ultimate tensile strength increased by about 30, 17, and 7%, respectively, for the treated sample. The treated alloy was characterized by using the techniques such as optical microscopy, electron back scattered diffraction (EBSD), energy-dispersive x-ray spectroscopy (EDS), and transmission electron microscopy (TEM) to observe the changes in the microstructural features. EBSD results show precipitation, better distribution of second-phase particles, and higher dislocation density in the treated alloy as compared to the untreated alloy. The treatment imparts improved hardness and strength to the alloy due to precipitation hardening and high dislocation density. Fracture morphologies of the treated and the native samples were characterized by using scanning electron microscopy and it was observed that the striations were denser in the treated sample justifying the higher fatigue strength.

Journal ArticleDOI
TL;DR: In this article, plates of 1100 aluminum alloy and AZ31 magnesium alloy were successfully welded together using the explosive welding technique, and the influence of the welding parameters on the weld quality was investigated.
Abstract: The undesirable properties of magnesium alloys include easy embrittlement, low oxidation resistance, and difficulty in welding with other materials Their application in industry is, therefore, restricted In this paper, plates of 1100 aluminum alloy and AZ31 magnesium alloy were successfully welded together using the explosive welding technique The influences of the welding parameters on the weld quality were investigated The surface morphology and microstructure near the weld interface were examined by optical microscopy, scanning electron microscopy (equipped with energy-dispersive x-ray spectroscopy), and transmission electron microscopy The experimental results demonstrated the typical wavy bonding interface In addition, elemental diffusion with a thickness of approximately 3 μm occurred near the bonding interface The two plates were joined together well at the atomic scale Nanograins with a size of approximately 5 nm were observed in the diffusion layer The microhardness and shear strength were measured to evaluate the mechanical properties, which confirmed that a high quality of bonding was acquired

Journal ArticleDOI
TL;DR: In this paper, the effect of strain rate on the tensile strength of fused deposition modeling parts built with Acrylonitrile-butadiene-styrene (ABS) and ABS plus material is presented.
Abstract: In this work the effect of strain rate on the tensile strength of fused deposition modeling parts built with Acrylonitrile-butadiene-styrene (ABS) and ABS plus material is presented. ASTM D638-02a specimens were built with ABS and ABS plus and they were tested on a Schenck Trebel Co. tensile test machine at three different test speeds, equal, lower, and higher to the test speed required by the ASTM D638-02a standard. The experimental tensile strength results were compared and evaluated. The fracture surfaces of selected specimens were examined with a scanning electron microscope, to determine failure mode of the filament strands. It was found that, as the test speed increases, specimens develop higher tensile strength and have higher elastic modulus. Specimens tested in the highest speed of the experiment had on average about 10% higher elastic modulus and developed on average about 11% higher tensile strength.

Journal ArticleDOI
TL;DR: In this article, equal channel angular pressing (ECAP) was used to produce ultrafine-grained microstructure and improve its mechanical properties, and the results showed that the strength and hardness values increased with an increase in the number of ECAP passes.
Abstract: Magnesium alloy Mg-Al-Mn (AM70) was processed by equal channel angular pressing (ECAP) at 275 °C for up to 4 passes in order to produce ultrafine-grained microstructure and improve its mechanical properties. ECAP-processed samples were characterized for microstructural analysis using optical microscopy, scanning electron microscopy, and transmission electron microscopy. Microstructural analysis showed that, with an increase in the number of ECAP passes, grains refined and grain size reduced from an average of 45 to 1 µm. Electron backscatter diffraction analysis showed the transition from low angle grain boundaries to high angle grain boundaries in ECAP 4 pass sample as compared to as-cast sample. The strength and hardness values an showed increasing trend for the initial 2 passes of ECAP processing and then started decreasing with further increase in the number of ECAP passes, even though the grain size continued to decrease in all the successive ECAP passes. However, the strength and hardness values still remained quite high when compared to the initial condition. This behavior was found to be correlated with texture modification in the material as a result of ECAP processing.

Journal ArticleDOI
TL;DR: In this article, the effects of shape, size and content on the tensile properties of the composites were studied and compared with each other, and possible particle fracture or debonding were investigated.
Abstract: The objective of this research was to investigate the mechanical behavior of metal matrix composites (MMCs) 6061 aluminum, reinforced with silicon carbide particles, under unidirectional tensile loading by finite element analysis. The effects of particle’s shape, size and content on the tensile properties of the composites were studied and compared with each other. In addition, stress and strain distributions and possible particle fracture or debonding were investigated. It was found that, among different shapes, a certain shape of reinforcement particle provided better tensile properties for MMCs and, within each shape category, composites with smaller particle size and higher particle content (20%) also showed better properties. It was also found that when the reinforcement content was 10%, the effects of shape and size of the particles were negligible. Not only interfacial length between the reinforcement and matrix materials, but also state of matrix material, due to the presence of the reinforcement particles, affected the stiffness of the MMCs. In almost all of the cases, except for MMCs with triangular particles, when the stress increased, with the increase in the applied positive displacement, the stress distributions remained unchanged.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the low-cycle fatigue behavior of P92 ferritic-martensitic steel and the corresponding microstructure evolution at 873 K using optical microscopy and scanning electron microscopy.
Abstract: The low-cycle fatigue behavior of P92 ferritic-martensitic steel and the corresponding microstructure evolution at 873 K has been extensively studied. The test results of fatigue lifetime are consistent with the Coffin-Manson relationship over a range of controlled total strain amplitudes from 0.15 to 0.6%. The influence of strain amplitude on the fatigue crack initiation and growth has been observed using optical microscopy and scanning electron microscopy. The formation mechanism of secondary cracks is established according to the observation of fracture after fatigue process and there is an intrinsic relationship between striation spacing, current crack length, and strain amplitude. Transmission electron microscopy has been employed to investigate the microstructure evolution after fatigue process. It indicates the interaction between carbides and dislocations together with the formation of cell structure inhibits the cyclic softening. The low-angle sub-boundary elimination in the martensite is mainly caused by the cyclic stress.

Journal ArticleDOI
TL;DR: In this paper, the influence of Zn content on the microstructure, mechanical properties, and corrosion and wear behavior of Mg-Zn-Ca alloys in simulated body fluid (SBF) were studied.
Abstract: Mg-Zn-Ca alloy has been attracting increasing attention as a potential biodegradable implant material. In this paper, Mg-3Zn-0.2Ca and Mg-4Zn-0.2Ca alloys were prepared by means of vacuum melting and subsequent hot extrusion process. The influences of Zn content on the microstructure, mechanical properties, and corrosion and wear behavior of Mg-Zn-Ca alloys in simulated body fluid (SBF) were studied. The results show that with increased Zn content, the grain size and corrosion resistance were decreased, while the mechanical strength and wear resistance were increased, under both dry sliding and SBF-lubricated conditions. For the same Mg-Zn-Ca alloy, the wear loss rate under SBF lubrication was higher than dry sliding condition, indicating a strong corrosion-assisted wear effect of SBF to the Mg-Zn-Ca alloy.

Journal ArticleDOI
Xin Wang1, DaQian Sun1, Y. Sun1
TL;DR: In this article, the results indicated that acceptable joints with sound appearance could be obtained by adjusting the thickness to the range of 0.1-0.2mm, where the average tensile strength reached a maximum of 190 MPa, representing a 79% joint efficiency relative to the Mg base metal.
Abstract: The joining of AZ31B Mg alloy to Q235 steel was realized by metal inert-gas arc welding using Cu-interlayer. Microstructure characteristics and mechanical properties of Mg-steel joints with Cu-interlayer of different thicknesses were investigated. The results indicated that acceptable joints with sound appearance could be obtained by adjusting the thickness to the range of 0.1-0.2 mm. In particular, at the thickness of 0.15 mm, the average tensile strength reached a maximum of 190 MPa, representing a 79% joint efficiency relative to the Mg base metal. Further increasing the thickness would cause more formation of coarse and thick Mg-Cu eutectic structure and Mg-Al-Cu ternary phase, which resulted in the decrease of joint strength. Therefore, the best thickness of Cu-interlayer to obtain high strength of Mg-steel MIG-welded joint was in the range of 0.1-0.15 mm. The average microhardness reached the maximum value in the reaction layer because of the presence of FeAl intermetallic compounds.