scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Nutritional Biochemistry in 2016"


Journal ArticleDOI
TL;DR: The findings suggest that curcumin plays a dual modulatory role in inhibition of adipogenesis as well as induction of the brown fat-like phenotype and thus may have potential therapeutic implications for treatment of obesity.
Abstract: Recent advances have been made in the understanding of pharmacological and dietary agents that contribute to browning of white adipose tissue in order to combat obesity by promoting energy expenditure. Here, we show that curcumin induces browning of 3T3-L1 and primary white adipocytes via enhanced expression of brown fat-specific genes. Curcumin-induced browning in white adipocytes was investigated by determining expression levels of brown adipocyte-specific genes/proteins by real-time reverse transcriptase polymerase chain reaction, immunoblot analysis and immunocytochemical staining. Curcumin increased mitochondrial biogenesis, as evidenced by transmission electronic microscopic detection and enhanced expression of proteins involved in fat oxidation. Cucurmin also increased protein levels of hormone-sensitive lipase and p-acyl-CoA carboxylase, suggesting its possible role in augmentation of lipolysis and suppression of lipogenesis. Increased expression of UCP1 and other brown adipocyte-specific markers was possibly mediated by curcumin-induced activation of AMP-activated protein kinase (AMPK) based on the fact that inhibition of AMPK by dorsomorphin abolished expression of PRDM16, UCP1 and peroxisome proliferator-activated receptor gamma co-activator 1-alpha while the activator 5-Aminoimidazole-4-carboxamide ribonucleotide elevated expression of these brown marker proteins. Our findings suggest that curcumin plays a dual modulatory role in inhibition of adipogenesis as well as induction of the brown fat-like phenotype and thus may have potential therapeutic implications for treatment of obesity.

180 citations


Journal ArticleDOI
TL;DR: The purpose of this review is to discuss lipids and their impact on innate and adaptive immune responses, focusing on the impact of altering lipid metabolism on immune cell activation, differentiation and function and the mechanism by which lipids such as cholesterol and fatty acids regulate immune cell plasticity.
Abstract: Immune cell plasticity has extensive implications in the pathogenesis and resolution of metabolic disorders, cancers, autoimmune diseases and chronic inflammatory disorders. Over the past decade, nutritional status has been discovered to influence the immune response. In metabolic disorders such as obesity, immune cells interact with various classes of lipids, which are capable of controlling the plasticity of macrophages and T lymphocytes. The purpose of this review is to discuss lipids and their impact on innate and adaptive immune responses, focusing on two areas: (1) the impact of altering lipid metabolism on immune cell activation, differentiation and function and (2) the mechanism by which lipids such as cholesterol and fatty acids regulate immune cell plasticity.

157 citations


Journal ArticleDOI
TL;DR: Research regarding this heterogenic group of fatty acids and the mechanisms relating them to (chronic) systemic low-grade inflammation, insulin resistance, metabolic syndrome and notably CVD are summarized.
Abstract: The mantra that dietary (saturated) fat must be minimized to reduce cardiovascular disease (CVD) risk has dominated nutritional guidelines for decades. Parallel to decreasing intakes of fat and saturated fatty acids (SFA), there have been increases in carbohydrate and sugar intakes, overweight, obesity and type 2 diabetes mellitus. The "lipid hypothesis" coined the concept that fat, especially SFA, raises blood low-density lipoprotein-cholesterol and thereby CVD risk. In view of current controversies regarding their adequate intakes and effects, this review aims to summarize research regarding this heterogenic group of fatty acids and the mechanisms relating them to (chronic) systemic low-grade inflammation, insulin resistance, metabolic syndrome and notably CVD. The intimate relationship between inflammation and metabolism, including glucose, fat and cholesterol metabolism, revealed that the dyslipidemia in Western societies, notably increased triglycerides, "small dense" low-density lipoprotein and "dysfunctional" high-density lipoprotein, is influenced by many unfavorable lifestyle factors. Dietary SFA is only one of these, not necessarily the most important, in healthy, insulin-sensitive people. The environment provides us not only with many other proinflammatory stimuli than SFA but also with many antiinflammatory counterparts. Resolution of the conflict between our self-designed environment and ancient genome may rather rely on returning to the proinflammatory/antiinflammatory balance of the Paleolithic era in consonance with the 21st century culture. Accordingly, dietary guidelines might reconsider recommendations for SFA replacement and investigate diet in a broader context, together with nondietary lifestyle factors. This should be a clear priority, opposed to the reductionist approach of studying the effects of single nutrients, such as SFA.

154 citations


Journal ArticleDOI
TL;DR: The results suggest that the Mediterranean diet could be a useful tool to restore potentially beneficial members of the gut microbiota, although the stability of these changes over time still remains to be assessed.
Abstract: Intestinal microbiota changes may be involved in the development of metabolic syndrome (MetS), which is a multicomponent disorder frequently associated with obesity. The aim of this study was to test the effect of consuming two healthy diets: a Mediterranean diet and a low-fat high-carbohydrate diet, for 2years in the gut microbiota of MetS patients and those in the control group. We analyzed the differences in the bacterial community structure between the groups after 2years of dietary intervention (Mediterranean or low-fat diet) through quantitative polymerase chain reaction using primers, targeting specific bacterial taxa. We observed, at basal time, that the abundance of Bacteroides, Eubacterium and Lactobacillus genera is lower in the control group than in MetS patients, while Bacteroides fragilis group, Parabacteroides distasonis, Bacteroides thetaiotaomicron, Faecalibacterium prausnitzii, Fusobacterium nucleatum, Bifidobacterium longum, Bifidobacterium adolescentis, Ruminococcus flavefaciens subgroup and Eubacterium rectale are depleted in MetS patients (all P values <.05). Additionally, we found that long-term consumption of Mediterranean diet partially restores the population of P. distasonis, B. thetaiotaomicron, F. prausnitzii, B. adolescentis and B. longum in MetS patients (all P values <.05). Our results suggest that the Mediterranean diet could be a useful tool to restore potentially beneficial members of the gut microbiota, although the stability of these changes over time still remains to be assessed.

152 citations


Journal ArticleDOI
TL;DR: A potential antiinflammatory effect of anthocyanins is suggested, which seem to inhibit activation of the signaling pathway mediated by the transcription factor NFκB, associated with modulation of a beneficial gut microbiota, particularly an increase in Bifidobacterium strains.
Abstract: The health benefits of consuming fruits that are rich in polyphenols, especially anthocyanins, have been the focus of recent in vitro and in vivo investigations. Thus, greater attention is being directed to the reduction of the inflammatory process associated with the intestinal microbiota and the mechanism underlying these effects because the microbiota has been closely associated with the metabolism of these compounds in the gastrointestinal tract. Further interest lies in the ability of these metabolites to modulate the growth of specific intestinal bacteria. Thus, this review examines studies involving the action of the anthocyanins that are present in many fruits and their effect in the modulating the inflammatory process associated with the interaction between the host and the gut microbiota. The findings of both in vitro and in vivo studies suggest a potential antiinflammatory effect of these compounds, which seem to inhibit activation of the signaling pathway mediated by the transcription factor NFκB. This effect is associated with modulation of a beneficial gut microbiota, particularly an increase in Bifidobacterium strains.

151 citations


Journal ArticleDOI
TL;DR: It is suggested that MAEs have potential benefits on improving dysfunction in diabetic mice and mitigating insulin resistance in HepG2 cells via activation of PI3K/AKT pathways.
Abstract: This study evaluated the capacity of mulberry anthocyanin extract (MAE) on insulin resistance amelioration in HepG2 cells induced by high glucose and palmitic acid and diabetes-related metabolic changes in type 2 diabetic mice. In vitro, MAE alleviated insulin resistance in HepG2 cells and increased glucose consumption, glucose uptake and glycogen content. Enzyme activities of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) were decreased due to PPARγ coactivator 1α (PGC-1α) and forkhead box protein O1 (FOXO1) inhibition. Furthermore, phosphorylation of protein kinase B (AKT) and glycogen synthase kinase-3β (GSK3β) in model cells was recovered after treated with MAE, leading to an up-regulation of glycogen synthase 2 (GYS2), and this effect was blocked by the phosphatidylinositol-3-kinase (PI3K) inhibitor LY294002. In vivo, MAE supplementation (50 and 125 mg/kg body weight per day) markedly decreased fasting blood glucose, serum insulin, leptin, triglyceride and cholesterol levels and increased adiponectin levels in db/db mice. The improvement of related metabolic parameters was in part associated with the impact of MAE on activating AKT and downstream targets in liver, skeletal muscle and adipose tissues. In summary, these findings suggest that MAEs have potential benefits on improving dysfunction in diabetic mice and mitigating insulin resistance in HepG2 cells via activation of PI3K/AKT pathways.

138 citations


Journal ArticleDOI
TL;DR: Ambient conditions can either enhance or decrease the stability of EGCG, thus influencing its biological activity, and usage of stabilizers and/or encapsulation into particulate systems such as nanoparticles or microparticles can significantly increase its stability.
Abstract: (-)-Epigallocatechin gallate (EGCG) has become a popular disease-preventive supplement worldwide because it may aid in slowing down the onset of age-related diseases such as cancer, diabetes and tissue degeneration. As largely demonstrated in cell culture studies, EGCG possesses antioxidant properties and exhibits favorable effects on gene expression, signal transduction and other cell functions. However, only limited effects have been observed in experimental animals and human epidemiological studies. The inconsistency between the biological activity of EGCG in cell cultures and in vivo can be attributed to its low stability, which not only decreases its bioavailability but also leads to the formation of degradation products and prooxidant molecules with possible side-effects. Understanding EGCG degradation kinetics in solution and in vivo is crucial for its successful clinical application. Ambient conditions (pH, temperature, oxygen) can either enhance or decrease the stability of EGCG, thus influencing its biological activity. Usage of stabilizers and/or encapsulation of EGCG into particulate systems such as nanoparticles or microparticles can significantly increase its stability. In this review, the effects of ambient conditions, stabilizers and encapsulation systems on EGCG stability, activity and degradation rate are illustrated.

126 citations


Journal ArticleDOI
TL;DR: Results suggest that milk SM is more effective than egg SM at combating the detrimental effects of a high-fat diet in mice, and distal gut microbiota is altered with milk SM and this may have contributed to the lower serum LPS observed.
Abstract: High dietary fat intake can cause elevated serum and hepatic lipids, as well as contribute to gut dysbiosis, intestinal barrier dysfunction and increased circulating lipopolysaccharide (LPS). Dietary milk sphingomyelin (SM) has been shown to inhibit lipid absorption in rodents. We evaluated the effects of milk SM on lipid metabolism and LPS levels in C57BL/6J mice fed a high-fat diet for 4weeks and compared it with egg SM. Mice were fed a high-fat diet (45%kcal from fat) (CTL, n=10) or the same diet modified to contain 0.25% (wt/wt) milk SM (MSM, n=10) or 0.25% (wt/wt) egg SM (ESM, n=10). After 4weeks, MSM had gained significantly less weight and had reduced serum cholesterol compared to CTL. ESM had increases in serum cholesterol, triglycerides, phospholipids and SM compared to CTL. MSM significantly decreased, while ESM increased, hepatic triglycerides. This may have been related to induction of hepatic stearoyl-CoA desaturase-1 mRNA observed in ESM. MSM displayed intestinal and hepatic gene expression changes consistent with cholesterol depletion. MSM had significantly lower serum LPS compared to CTL, which may have been due to altered distal gut microbiota. Fecal Gram-negative bacteria were significantly lower, while fecal Bifidobacterium were higher, in MSM. These results suggest that milk SM is more effective than egg SM at combating the detrimental effects of a high-fat diet in mice. Additionally, distal gut microbiota is altered with milk SM and this may have contributed to the lower serum LPS observed.

121 citations


Journal ArticleDOI
TL;DR: In this article, the authors showed that long-term high-fat (HF) feeding accelerates inflammatory process and changes gut microbiome composition, which is associated with dramatic increases in body fat composition, inflammatory cell infiltration, inducible nitric oxide synthase protein concentration and cell proliferation marker (Ki67) in ileum and colon.
Abstract: Consumption of an obesigenic/high-fat diet (HFD) is associated with a high colon cancer risk and may alter the gut microbiota. To test the hypothesis that long-term high-fat (HF) feeding accelerates inflammatory process and changes gut microbiome composition, C57BL/6 mice were fed HFD (45% energy) or a low-fat (LF) diet (10% energy) for 36 weeks. At the end of the study, body weights in the HF group were 35% greater than those in the LF group. These changes were associated with dramatic increases in body fat composition, inflammatory cell infiltration, inducible nitric oxide synthase protein concentration and cell proliferation marker (Ki67) in ileum and colon. Similarly, β-catenin expression was increased in colon (but not ileum). Consistent with gut inflammation phenotype, we also found that plasma leptin, interleukin 6 and tumor necrosis factor α concentrations were also elevated in mice fed the HFD, indicative of chronic inflammation. Fecal DNA was extracted and the V1-V3 hypervariable region of the microbial 16S rRNA gene was amplified using primers suitable for 454 pyrosequencing. Compared to the LF group, the HF group had high proportions of bacteria from the family Lachnospiraceae/Streptococcaceae, which is known to be involved in the development of metabolic disorders, diabetes and colon cancer. Taken together, our data demonstrate, for the first time, that long-term HF consumption not only increases inflammatory status but also accompanies an increase of colonic β-catenin signaling and Lachnospiraceae/Streptococcaceae bacteria in the hind gut of C57BL/6 mice.

120 citations


Journal ArticleDOI
TL;DR: Kaem has an anticancer effect against procancer activity of E2 or TCS, a xenoestrogen, in breast cancer and may be suggested as a prominent agent to neutralize breast cancer risk caused by TCS.
Abstract: As a phytoestrogen, kaempferol (Kaem) is one of bioflavonoids, which are found in a variety of vegetables including broccoli, tea and tomato. In this study, the antiproliferative effects of Kaem in triclosn (TCS)-induced cell growth were examined in MCF-7 breast cancer cells. TCS promoted the cell viability of MCF-7 cells via estrogen receptor α (ERα) as did 17β-estradiol (E2), a positive control. On the other hand, Kaem significantly suppressed E2 or TCS-induced cell growth. To elucidate the molecular mechanisms of TCS and Kaem, alterations in the expressions of cell cycle, apoptosis and metastasis-related genes were identified using western blot assay. The treatment of the cells with TCS up-regulated the protein expressions of cyclin D1, cyclin E and cathepsin D, while down-regulated p21 and bax expressions. Kaem reversed TCS-induced gene expressions in an opposite manner. The phosphorylation of IRS-1, AKT, MEK1/2 and ERK was increased by TCS, indicating that TCS induced MCF-7 cell proliferation via nongenomic ER signaling pathway associated with IGF-1R. Kaem presented an antagonistic activity on this signaling by down-regulating the protein expression of pIRS-1, pAkt and pMEK1/2 promoted by E2 or TCS. In an in vivo xenografted mouse model, tumor growth was induced by treatment with E2 or TCS, which was identified in the measurement of tumor volume, hematoxylin and eosin staining, bromodeoxyuridine and immunohistochemistry assay. On the contrary, E2 or TCS-induced breast tumor growth was inhibited by co-treatment with Kaem, which is consistent with in vitro results. Taken together, these results revealed that Kaem has an anticancer effect against procancer activity of E2 or TCS, a xenoestrogen, in breast cancer and may be suggested as a prominent agent to neutralize breast cancer risk caused by TCS.

113 citations


Journal ArticleDOI
TL;DR: Cell signaling is focused on to explain the beneficial role of polyphenols at the three stages of cancer development: the cytoprotective antioxidant response and their proapoptotic action at the premalignant stage, and how phenolic acids and flavonols hamper the development of metastatic cancer.
Abstract: The cytoprotective and anticancer action of dietary in-taken natural polyphenols has for long been attributed only to their direct radical scavenging activities. Currently it is well supported that those compounds display a broad spectrum of biological and pharmacological outcomes mediated by their complex metabolism, interaction with gut microbiota as well as direct interactions of their metabolites with key cellular signaling proteins. The beneficial effects of natural polyphenols and their synthetic derivatives are extensively studied in context of cancer prophylaxis and therapy. Herein we focus on cell signaling to explain the beneficial role of polyphenols at the three stages of cancer development: we review the recent proceedings about the impact of polyphenols on the cytoprotective antioxidant response and their proapoptotic action at the premalignant stage, and finally we present data showing how phenolic acids (e.g., caffeic, chlorogenic acids) and flavonols (e.g., quercetin) hamper the development of metastatic cancer.

Journal ArticleDOI
Yaoyao Jia1, Chunyan Wu1, Ji Young Kim1, Bobae Kim1, Sung Joon Lee1 
TL;DR: In addition to the previously reported differential regulation of PPARα and PPARγ, inhibition of Akt activity and activation of hepatic autophagy reduced hepatic steatosis in mouse livers, suggesting that AX lowers hepatic lipid accumulation in HFD-fed mice via multiple mechanisms.
Abstract: We have previously reported that astaxanthin (AX), a dietary carotenoid, directly interacts with peroxisome proliferator-activated receptors PPARα and PPARγ, activating PPARα while inhibiting PPARγ, and thus reduces lipid accumulation in hepatocytes in vitro. To investigate the effects of AX in vivo, high-fat diet (HFD)-fed C57BL/6J mice were orally administered AX (6 or 30mg/kg body weight) or vehicle for 8weeks. AX significantly reduced the levels of triglyceride both in plasma and in liver compared with the control HFD mice. AX significantly improved liver histology and thus reduced both steatosis and inflammation scores of livers with hematoxylin and eosin staining. The number of inflammatory macrophages and Kupffer cells were reduced in livers by AX administration assessed with F4/80 staining. Hepatic PPARα-responsive genes involved in fatty acid uptake and β-oxidation were upregulated, whereas inflammatory genes were downregulated by AX administration. In vitro radiolabeled assays revealed that hepatic fatty acid oxidation was induced by AX administration, whereas fatty acid synthesis was not changed in hepatocytes. In mechanism studies, AX inhibited Akt activity and thus decreased SREBP1 phosphorylation and induced Insig-2a expression, both of which delayed nuclear translocation of SREBP1 and subsequent hepatic lipogenesis. Additionally, inhibition of the Akt-mTORC1 signaling axis by AX stimulated hepatic autophagy that could promote degradation of lipid droplets. These suggest that AX lowers hepatic lipid accumulation in HFD-fed mice via multiple mechanisms. In addition to the previously reported differential regulation of PPARα and PPARγ, inhibition of Akt activity and activation of hepatic autophagy reduced hepatic steatosis in mouse livers.

Journal ArticleDOI
TL;DR: The present review tries to summarize the most recent data evidencing the effects of nutrients and dietary bioactive compounds intake on the modulation of molecular mechanisms leading to fat accumulation, oxidative stress, inflammation and liver fibrosis in NAFLD patients.
Abstract: Following the epidemics of obesity, nonalcoholic fatty liver disease (NAFLD) has become the leading cause of liver disease in western countries. NAFLD is the hepatic manifestation of metabolic syndrome and may progress to cirrhosis and hepatocellular carcinoma. To date, there are no approved drugs for the treatment of NAFLD, and the main clinical recommendation is lifestyle modification, including increase of physical activity and the adoption of a healthy eating behavior. In this regard, studies aimed to elucidate the effect of dietary interventions and the mechanisms of action of specific food bioactives are urgently needed. The present review tries to summarize the most recent data evidencing the effects of nutrients and dietary bioactive compounds intake (i.e., long-chain PUFA, Vitamin E, Vitamin D, minerals and polyphenols) on the modulation of molecular mechanisms leading to fat accumulation, oxidative stress, inflammation and liver fibrosis in NAFLD patients.

Journal ArticleDOI
TL;DR: Consumption of blackcurrant extract in amounts roughly equivalent to 100-g blackcurrants reduced postprandial glycemia, insulinemia and incretin secretion, which suggests that inclusion ofblackcurrant polyphenols in foods may provide cardio-metabolic health benefits.
Abstract: Blackcurrants are rich in polyphenolic glycosides called anthocyanins, which may inhibit postprandial glycemia. The aim was to determine the dose-dependent effects of blackcurrant extract on postprandial glycemia. Men and postmenopausal women (14M, 9W, mean age 46 years, S.D.=14) were enrolled into a randomized, double-blind, crossover trial. Low sugar fruit drinks containing blackcurrant extract providing 150-mg (L-BE), 300-mg (M-BE) and 600-mg (H-BE) total anthocyanins or no blackcurrant extract (CON) were administered immediately before a high-carbohydrate meal. Plasma glucose, insulin and incretins (GIP and GLP-1) were measured 0-120min, and plasma 8-isoprostane F2α, together with arterial stiffness by digital volume pulse (DVP) was measured at 0 and 120min. Early plasma glucose response was significantly reduced following H-BE (n=22), relative to CON, with a mean difference (95% CI) in area over baseline (AOB) 0-30min of -0.34mmol/l.h (-0.56, -0.11, P<.005); there were no differences between the intermediate doses and placebo. Plasma insulin concentrations (AOB 0-30min) were similarly reduced. Plasma GIP concentrations (AOB 0-120min) were significantly reduced following H-BE, with a mean difference of -46.6ng/l.h (-66.7, -26.5, P<.0001) compared to CON. Plasma GLP-1 concentrations were reduced following H-BE at 90min. There were no effects on 8-isoprostane F2α or vascular function. Consumption of blackcurrant extract in amounts roughly equivalent to 100-g blackcurrants reduced postprandial glycemia, insulinemia and incretin secretion, which suggests that inclusion of blackcurrant polyphenols in foods may provide cardio-metabolic health benefits. This trial was registered at clinicaltrials.gov as NCT01706653.

Journal ArticleDOI
TL;DR: Naringenin is a promising compound to treat LPS-induced inflammatory pain and leukocyte recruitment and inhibited NF-κB activation in vitro and in vivo.
Abstract: Lipopolysaccharide (LPS) is the major structural component of Gram-negative bacteria cell wall and a highly pro-inflammatory toxin. Naringenin is found in Citrus fruits and exhibits antioxidant and anti-inflammatory properties through inhibition of NF-κB activation but its effects in LPS-induced inflammatory pain and leukocyte recruitment were not investigated yet. We investigated the effects of naringenin in mechanical hyperalgesia, thermal hyperalgesia and leukocyte recruitment induced by intraplantar injection of LPS in mice. We found that naringenin reduced hyperalgesia to mechanical and thermal stimuli, myeloperoxidase (MPO, a neutrophil and macrophage marker) and N-acetyl-β-D-glucosaminidase (NAG, a macrophage marker) activities, oxidative stress and cytokine (TNF-α, IL-1β, IL-6, and IL-12) production in the paw skin. In the peritoneal cavity, naringenin reduced neutrophil and mononuclear cell recruitment, and abrogated MPO and NAG activity, cytokine and superoxide anion production, and lipid peroxidation. In vitro, pre-treatment with naringenin inhibited superoxide anion and cytokine (TNF-α, IL-1β, IL-6, and IL-12) production by LPS-stimulated RAW 264.7 macrophages. Finally, we demonstrated that naringenin inhibited NF-κB activation in vitro and in vivo. Therefore, naringenin is a promising compound to treat LPS-induced inflammatory pain and leukocyte recruitment.

Journal ArticleDOI
TL;DR: Prior to disease induction, bean supplementation enhanced multiple concurrent gut health promoting parameters that translated into reduced colitis severity, and both bean diets exerted similar effects, indicating that differing phenolic content did not influence the endpoints assessed.
Abstract: Common beans are rich in phenolic compounds and nondigestible fermentable components, which may help alleviate intestinal diseases. We assessed the gut health priming effect of a 20% cranberry bean flour diet from two bean varieties with differing profiles of phenolic compounds [darkening (DC) and nondarkening (NDC) cranberry beans vs. basal diet control (BD)] on critical aspects of gut health in unchallenged mice, and during dextran sodium sulfate (DSS)-induced colitis (2% DSS wt/vol, 7 days). In unchallenged mice, NDC and DC increased (i) cecal short-chain fatty acids, (ii) colon crypt height, (iii) crypt goblet cell number and mucus content and (iv) Muc1, Klf4, Relmβ and Reg3γ gene expression vs. BD, indicative of enhanced microbial activity and gut barrier function. Fecal 16S rRNA sequencing determined that beans reduced abundance of the Lactobacillaceae (Ruminococcus gnavus), Clostridiaceae (Clostridium perfringens), Peptococcaceae, Peptostreptococcaceae, Rikenellaceae and Pophyromonadaceae families, and increased abundance of S24-7 and Prevotellaceae. During colitis, beans reduced (i) disease severity and colonic histological damage, (ii) increased gene expression of barrier function promoting genes (Muc1-3, Relmβ, and Reg3γ) and (iii) reduced colonic and circulating inflammatory cytokines (IL-1β, IL-6, IFNγ and TNFα). Therefore, prior to disease induction, bean supplementation enhanced multiple concurrent gut health promoting parameters that translated into reduced colitis severity. Moreover, both bean diets exerted similar effects, indicating that differing phenolic content did not influence the endpoints assessed. These data demonstrate a proof-of-concept regarding the gut-priming potential of beans in colitis, which could be extended to mitigate the severity of other gut barrier-associated pathologies.

Journal ArticleDOI
TL;DR: It is indicated that DHA has neuroprotective effects in a number of neurodegenerative conditions including AD, and the beneficial effects of this key omega-3 fatty acid supplementation may depend on the stage of disease progression, other dietary mediators and the apolipoprotein ApoE genotype.
Abstract: Among omega-3 polyunsaturated fatty acids (PUFAs), docosahexaenoic acid (DHA, 22:6n-3) is important for adequate brain development and cognition. DHA is highly concentrated in the brain and plays an essential role in brain functioning. DHA, one of the major constituents in fish fats, readily crosses the blood-brain barrier from blood to the brain. Its critical role was further supported by its reduced levels in the brain of Alzheimer's disease (AD) patients. This agrees with a potential role of DHA in memory, learning and cognitive processes. Since there is yet no cure for dementia such as AD, there is growing interest in the role of DHA-supplemented diet in the prevention of AD pathogenesis. Accordingly, animal, epidemiological, preclinical and clinical studies indicated that DHA has neuroprotective effects in a number of neurodegenerative conditions including AD. The beneficial effects of this key omega-3 fatty acid supplementation may depend on the stage of disease progression, other dietary mediators and the apolipoprotein ApoE genotype. Herein, our review investigates, from animal and cell culture studies, the molecular mechanisms involved in the neuroprotective potential of DHA with emphasis on AD.

Journal ArticleDOI
TL;DR: Some of the adverse health consequences of consuming an HF diet rich in saturated fat can be attenuated by table grape consumption, and grape feeding attenuated the HF-induced impairment in epithelial localization of the intestinal tight junction protein zonula occludens.
Abstract: Our objective was to determine if consuming table grapes reduces adiposity and its metabolic consequences and alters gut microbiota in mice fed a high-fat (HF), butter-rich diet C57BL/6J mice were fed a low-fat (LF) diet or HF diet with 3% or 5% grapes for 11weeks Total body and inguinal fat were moderately but significantly reduced in mice fed both levels of grapes compared to their controls Mice fed 5% grapes had lower liver weights and triglyceride levels and decreased expression of glycerol-3-phosphate acyltransferase (Gpat1) compared to the 5% controls Mice fed 3% grapes had lower hepatic mRNA levels of peroxisome proliferator-activated receptor gamma 2, sterol-CoA desaturase 1, fatty-acid binding protein 4 and Gpat1 compared to the 3% controls Although grape feeding had only a minor impact on markers of inflammation or lipogenesis in adipose tissue or intestine, 3% of grapes decreased the intestinal abundance of sulfidogenic Desulfobacter spp and the Bilophila wadsworthia-specific dissimilatory sulfite reductase gene and tended to increase the abundance of the beneficial bacterium Akkermansia muciniphila compared to controls In addition, Bifidobacterium, Lactobacillus, Allobaculum and several other genera correlated negatively with adiposity Allobaculum in particular was increased in the LF and 3% grapes groups compared to the HF-fed controls Notably, grape feeding attenuated the HF-induced impairment in epithelial localization of the intestinal tight junction protein zonula occludens Collectively, these data indicate that some of the adverse health consequences of consuming an HF diet rich in saturated fat can be attenuated by table grape consumption

Journal ArticleDOI
TL;DR: Data demonstrate that the polyphenol-rich, EP fraction from table grapes attenuated many of the adverse health consequences associated with consuming an HF diet.
Abstract: The objective of this study was to determine if consuming an extractable or nonextractable fraction of table grapes reduced the metabolic consequences of consuming a high-fat, American-type diet. Male C57BL/6J mice were fed a low fat (LF) diet, a high fat (HF) diet, or an HF diet containing whole table grape powder (5% w/w), an extractable, polyphenol-rich (HF-EP) fraction, a nonextractable, polyphenol-poor (HF-NEP) fraction or equal combinations of both fractions (HF-EP+NEP) from grape powder for 16weeks. Mice fed the HF-EP and HF-EP+NEP diets had lower percentages of body fat and amounts of white adipose tissue (WAT) and improved glucose tolerance compared to the HF-fed controls. Mice fed the HF-EP+NEP diet had lower liver weights and triglyceride (TG) levels compared to the HF-fed controls. Mice fed the HF-EP+NEP diets had higher hepatic mRNA levels of hormone sensitive lipase and adipose TG lipase, and decreased expression of c-reactive protein compared to the HF-fed controls. In epididymal (visceral) WAT, the expression levels of several inflammatory genes were lower in mice fed the HF-EP and HF-EP+NEP diets compared to the HF-fed controls. Mice fed the HF diets had increased myeloperoxidase activity and impaired localization of the tight junction protein zonula occludens-1 in ileal mucosa compared to the HF-EP and HF-NEP diets. Several of these treatment effects were associated with alterations in gut bacterial community structure. Collectively, these data demonstrate that the polyphenol-rich, EP fraction from table grapes attenuated many of the adverse health consequences associated with consuming an HF diet.

Journal ArticleDOI
TL;DR: Data suggest that EGCG-induced epigenetic modifications can decrease PCB-induced vascular toxicity, and suggest that bioactive food compounds such as polyphenols may exert their protection by modulating inflammatory pathways regulated through nuclear factor-kappa B (NF-κB) signaling.
Abstract: Anti-inflammatory polyphenols, such as epigallocatechin-3-gallate (EGCG), have been shown to protect against the toxicity of environmental pollutants. It is well known that bioactive food compounds such as polyphenols may exert their protection by modulating inflammatory pathways regulated through nuclear factor-kappa B (NF-κB) signaling. EGCG has been reported to inhibit NF-κB activation. We hypothesize that EGCG can protect against polychlorinated biphenyl (PCB)-induced endothelial inflammation in part through epigenetic regulation of NF-κB-regulated inflammatory genes. In order to test this hypothesis, human endothelial cells (EA.hy926) were exposed to physiologically relevant levels of coplanar PCB 126 and/or 15 or 30 μM of EGCG, followed by quantification of NF-κB subunit p65, histone acetyltransferase p300 and histone deacetylases (HDACs) accumulation through chromatin immunoprecipitation assay in the promoter region of inflammatory genes. In addition, the enrichment of the acetylated H3 was also quantified. PCB 126 exposure increased the expression of vascular inflammatory mediators, including interleukin (IL)-6, C-reactive protein, intercellular adhesion molecule-1, vascular cell adhesion molecule-1 and IL-1α/β, which were prevented by pretreatment with EGCG. This inhibitory effect by EGCG correlated with abolished nuclear import of p65, decreased chromatin binding of p65 and p300, as well as increased chromatin binding of HDAC 1/2. Furthermore, EGCG induced hypoacetylation of H3, which accounts for deactivation of downstream genes. These data suggest that EGCG-induced epigenetic modifications can decrease PCB-induced vascular toxicity.

Journal ArticleDOI
TL;DR: Diet-induced modifications in microbial activity and resultant impact on sensory perception of macronutrients and total energy intake, nutrient absorption, transport and storage, and immune-mediated signaling related to adipose inflammation are detailed.
Abstract: The obesity epidemic afflicts over one third of the United States population. With few therapies available to combat obesity, a greater understanding of the systemic causes of this and other metabolic disorders is needed to develop new, effective treatments. The mammalian intestinal microbiota contributes to metabolic processes in the host. This review summarizes the research demonstrating the interplay of diet, intestinal microbiota and host metabolism. We detail the effects of diet-induced modifications in microbial activity and resultant impact on (1) sensory perception of macronutrients and total energy intake; (2) nutrient absorption, transport and storage; (3) liver and biliary function; (4) immune-mediated signaling related to adipose inflammation; and (5) circadian rhythm. We also discuss therapeutic strategies aimed to modify host-microbe interactions, including prebiotics, probiotics and postbiotics, as well as fecal microbiota transplantation. Elucidating the role of gut microbes in shaping metabolic homeostasis or dysregulation provides greater insight into disease development and a promising avenue for improved treatment of metabolic dysfunction.

Journal ArticleDOI
TL;DR: The data demonstrate the beneficial effect of HT in the prevention of early inflammatory events responsible for the onset of IR and steatosis, reducing hepatic inflammation and nitrosative/oxidative stress and restoring glucose homeostasis and intestinal barrier integrity.
Abstract: The potential mechanisms of action of polyphenols in nonalcoholic fatty liver disease (NAFLD) are overlooked. Here, we evaluate the beneficial therapeutic effects of hydroxytyrosol (HT), the major metabolite of the oleuropein, in a nutritional model of insulin resistance (IR) and NAFLD by high-fat diet. Young male rats were divided into three groups receiving (1) standard diet (STD; 10.5% fat), (2) high-fat diet (HFD; 58.0% fat) and (3) HFD+HT (10 mg/kg/day by gavage). After 5 weeks, the oral glucose tolerance test was performed, and at 6th week, blood sample and tissues (liver and duodenum) were collected for following determinations. The HT-treated rats showed a marked reduction in serum AST, ALT and cholesterol and improved glucose tolerance and insulin sensitivity, reducing homeostasis model assessment index. HT significantly corrected the metabolic impairment induced by HFD, increasing hepatic peroxisome proliferator activated receptor PPAR-α and its downstream-regulated gene fibroblast growth factor 21, the phosphorylation of acetyl-CoA carboxylase and the mRNA carnitine palmitoyltransferase 1a. HT also reduced liver inflammation and nitrosative/oxidative stress decreasing the nitrosylation of proteins, reactive oxygen species production and lipid peroxidation. Moreover, HT restored intestinal barrier integrity and functions (fluorescein isothiocyanate-dextran permeability and mRNA zona occludens ZO-1). Our data demonstrate the beneficial effect of HT in the prevention of early inflammatory events responsible for the onset of IR and steatosis, reducing hepatic inflammation and nitrosative/oxidative stress and restoring glucose homeostasis and intestinal barrier integrity.

Journal ArticleDOI
TL;DR: Fucoidan supplementation appears to have anti-dyslipidemic and anti-atherosclerotic effects by inducing LPL activity and inhibiting the effects of inflammation and oxidative stress in HFD-fed ApoE(shl) mice.
Abstract: Fucoidan, a sulfated polysaccharide extracted from brown seaweeds, possesses many biological activities including anti-inflammatory and antioxidant activities. We aimed to investigate the protective effects of fucoidan on dyslipidemia and atherosclerosis in apolipoprotein E-deficient mice (ApoE(shl) mice) and to elucidate its molecular targets in the liver by using a transcriptomic approach. For 12weeks, ApoE(shl) mice were fed a high-fat diet (HFD) supplemented with either 1% or 5% fucoidan. Fucoidan supplementation significantly reduced tissue weight (liver and white adipose tissue), blood lipid, total cholesterol (TC), triglyceride (TG), non-high-density lipoprotein cholesterol (non-HDL-C) and glucose levels in HFD-fed ApoE(shl) mice but increased plasma lipoprotein lipase (LPL) activity and HDL-C levels. Fucoidan also reduced hepatic steatosis levels (liver size, TC and TG levels, and lipid peroxidation) and increased white adipose tissue LPL activity. DNA microarray analysis and quantitative reverse transcription-polymerase chain reaction demonstrated differential expression of genes encoding proteins involved in lipid metabolism, energy homeostasis and insulin sensitivity, by activating Ppara and inactivating Srebf1. Fucoidan supplementation markedly reduced the thickness of the lipid-rich plaque, lipid peroxidation and foaming macrophage accumulation in the aorta in HFD-fed ApoE(shl) mice. Thus, fucoidan supplementation appears to have anti-dyslipidemic and anti-atherosclerotic effects by inducing LPL activity and inhibiting the effects of inflammation and oxidative stress in HFD-fed ApoE(shl) mice.

Journal ArticleDOI
TL;DR: The data suggest that one mechanism related to the effect of butyrate on atherosclerotic development is the reduction of oxidative stress in the lesion site, which attenuates endothelium dysfunction and macrophage migration and activation in theLesion site.
Abstract: Butyrate is a 4-carbon fatty acid that has antiinflammatory and antioxidative properties. It has been demonstrated that butyrate is able to reduce atherosclerotic development in animal models by reducing inflammatory factors. However, the contribution of its antioxidative effects of butyrate on atherogenesis has not yet been studied. We investigated the influence of butyrate on oxidative status, reactive oxygen species (ROS) release and oxidative enzymes (NADPH oxidase and iNOS) in atherosclerotic lesions of ApoE(-/-) mice and in oxLDL-stimulated peritoneal macrophages and endothelial cells (EA.hy926). The lesion area in aorta was reduced while in the aortic valve, although lesion area was unaltered, superoxide production and protein nitrosylation were reduced in butyrate-supplemented mice. Peritoneal macrophages from the butyrate group presented a lower free radical release after zymosan stimulus. When endothelial cells were pretreated with butyrate before oxLDL stimulus, the CCL-2 and superoxide ion productions and NADPH oxidase subunit p22phox were reduced. In macrophage cultures, in addition to a reduction in ROS release, nitric oxide and iNOS expression were down-regulated. The data suggest that one mechanism related to the effect of butyrate on atherosclerotic development is the reduction of oxidative stress in the lesion site. The reduction of oxidative stress related to NADPH oxidase and iNOS expression levels associated to butyrate supplementation attenuates endothelium dysfunction and macrophage migration and activation in the lesion site.

Journal ArticleDOI
TL;DR: The results suggest that fisetin exerts anti-inflammatory activity via inhibition of Akt, p38 MAPK and NF-κB signaling in the colon tissues of DSS-exposed mice.
Abstract: Fisetin, a dietary flavonoid, is commonly found in many fruits and vegetables. Although studies indicate that fisetin has an anti-inflammatory property, little is known about its effects on intestinal inflammation. The present study investigated the effects of the fisetin on dextran sulphate sodium (DSS)-induced murine colitis, an animal model that resembles human inflammatory bowel disease. Fisetin treatment to DSS-exposed mice significantly reduced the severity of colitis and alleviated the macroscopic and microscopic signs of the disease. Moreover, fisetin reduced the levels of myeloperoxidase activity, the production of proinflammatory cytokines, tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and interleukin-6 (IL-6) and the expressions of COX-2 and iNOS in the colon tissues. Further studies revealed that fisetin suppressed the activation of NF-κB (p65) by inhibiting IκBα phosphorylation and NF-κB (p65)-DNA binding activity and attenuated the phosphorylation of Akt and the p38, but not ERK and JNK MAPKs in the colon tissues of DSS-exposed mice. In addition, DSS-induced decline in reduced glutathione (GSH) and the increase in malondialdehyde (MDA) levels were significantly restored by oral fisetin. Furthermore, the results from in vitro studies showed that fisetin significantly reduced the pro-inflammatory cytokine and mediator release and suppressed the degradation and phosphorylation of IκBα with subsequent nuclear translocation of NF-κB (p65) in lipopolysaccharide (LPS)-stimulated mouse primary peritoneal macrophages. These results suggest that fisetin exerts anti-inflammatory activity via inhibition of Akt, p38 MAPK and NF-κB signaling in the colon tissues of DSS-exposed mice. Thus, fisetin may be a promising candidate as pharmaceuticals or nutraceuticals in the treatment of inflammatory bowel disease.

Journal ArticleDOI
TL;DR: The anti-inflammatory effect of BE at colorectal sites is a result of a number of mechanisms: antioxidation, down-regulation of the expression of inflammatory mediators and inhibition of the nuclear translocation of NF-κB.
Abstract: Inflammatory bowel disease (IBD) is an inflammatory disorder caused by hyperactivation of effector immune cells that produce high levels of proinflammatory cytokines. The aims of our study were to determine whether orally administered blueberry extract (BE) could attenuate or prevent the development of experimental colitis in mice and to elucidate the mechanism of action. Female Balb/C mice (n=7) were randomized into groups differing in treatment conditions (prevention and treatment) and dose of BE (50 mg/kg body weight). Acute ulcerative colitis was induced by oral administration of 3% dextran sodium sulfate for 7 days in drinking water. Colonic mucosal injury was assessed by clinical, macroscopic, biochemical and histopathological examinations. BE significantly decreased disease activity index and improved the macroscopic and histological score of colons when compared to the colitis group (P<.05). BE markedly attenuated myeloperoxidase accumulation (colitis group 54.97±2.78 nmol/mg, treatment group 30.78±1.33 nmol/mg) and malondialdehyde in colon and prostaglandin E2 level in serum while increasing the levels of superoxide dismutase and catalase (colitis group 11.94±1.16 U/ml, BE treatment group 16.49±0.39 U/ml) compared with the colitis group (P<.05). mRNA levels of the cyclooxygenase (COX)-2, interferon-γ, interleukin (IL)-1β and inducible nitric oxide synthase cytokines were determined by reverse transcriptase polymerase chain reaction. Immunohistochemical analysis showed that BE attenuates the expression of COX-2 and IL-1β in colonic tissue. Moreover, BE reduced the nuclear translocation of nuclear transcription factor kappa B (NF-κB) by immunofluorescence analysis. Thus, the anti-inflammatory effect of BE at colorectal sites is a result of a number of mechanisms: antioxidation, down-regulation of the expression of inflammatory mediators and inhibition of the nuclear translocation of NF-κB.

Journal ArticleDOI
TL;DR: There were no differences between DHA-supplemented groups in brain region, whole-body, or tissue DHA accretion rates except heart and serum TAG where the PL-DHA/TAG-D HA blend was higher than TAG-dHA.
Abstract: Tracer studies suggest that phospholipid DHA (PL-DHA) more effectively targets the brain than triglyceride DHA (TAG-DHA), although the mechanism and whether this translates into higher brain DHA concentrations are not clear. Rats were gavaged with [U- 3 H]PL-DHA and [U- 3 H]TAG-DHA and blood sampled over 6 h prior to collection of brain regions and other tissues. In another experiment, rats were supplemented for 4 weeks with TAG-DHA (fish oil), PL-DHA (roe PL) or a mixture of both for comparison to a low-omega-3 diet. Brain regions and other tissues were collected, and blood was sampled weekly. DHA accretion rates were estimated using the balance method. [U- 3 H]PL-DHA rats had higher radioactivity in cerebellum, hippocampus and remainder of brain, with no differences in other tissues despite higher serum lipid radioactivity in [U- 3 H]TAG-DHA rats. TAG-DHA, PL-DHA or a mixture were equally effective at increasing brain DHA. There were no differences between DHA-supplemented groups in brain region, whole-body, or tissue DHA accretion rates except heart and serum TAG where the PL-DHA/TAG-DHA blend was higher than TAG-DHA. Apparent DHA β-oxidation was not different between DHA-supplemented groups. This indicates that more labeled DHA enters the brain when consumed as PL; however, this may not translate into higher brain DHA concentrations.

Journal ArticleDOI
TL;DR: Vitamin D deficiency resulted in the dysregulation of glucose metabolism in GK rats by simultaneously increasing insulin resistance by decreasing adipose PPAR-γ expression and deteriorating β-cell function and mass.
Abstract: Human studies have provided relatively strong associations of poor vitamin D status with Type 2 diabetes but do not explain the nature of the association. Here, we explored the physiological pathways that may explain how vitamin D status modulates energy, lipid and glucose metabolisms in nonobese Type 2 diabetic rats. Goto-Kakizaki (GK) rats were fed high-fat diets containing 25 (VD-low), 1000 (VD-normal) or 10,000 (VD-high) cholecalciferol-IU/kg diet for 8 weeks. Energy expenditure, insulin resistance, insulin secretory capacity and lipid metabolism were measured. Serum 25-OH-D levels, an index of vitamin D status, increased dose dependently with dietary vitamin D. VD-low resulted in less fat oxidation without a significant difference in energy expenditure and less lean body mass in the abdomen and legs comparison to the VD-normal group. In comparison to VD-low, VD-normal had lower serum triglycerides and intracellular fat accumulation in the liver and skeletal muscles which was associated with down-regulation of the mRNA expressions of sterol regulatory element binding protein-1c and fatty acid synthase and up-regulation of gene expressions of peroxisome proliferator-activated receptors (PPAR)-α and carnitine palmitoyltransferase-1. In euglycemic hyperinsulinemic clamp, whole-body and hepatic insulin resistance was exacerbated in the VD-low group but not in the VD-normal group, possibly through decreasing hepatic insulin signaling and PPAR-γ expression in the adipocytes. In 3T3-L1 adipocytes 1,25-(OH)2-D (10 nM) increased triglyceride accumulation by elevating PPAR-γ expression and treatment with a PPAR-γ antagonist blocked the triglyceride deposition induced by 1,25-(OH)2-D treatment. VD-low impaired glucose-stimulated insulin secretion in hyperglycemic clamp and decreased β-cell mass by decreasing β-cell proliferation. In conclusion, vitamin D deficiency resulted in the dysregulation of glucose metabolism in GK rats by simultaneously increasing insulin resistance by decreasing adipose PPAR-γ expression and deteriorating β-cell function and mass.

Journal ArticleDOI
TL;DR: Data revealed that PFE reversed arsenic-induced hepatotoxicity and apoptosis by modulating the ROS/Nrf2/p53-miR-34a axis, and mapped the possible signaling pathways associated with arsenic- induced hepatot toxicity and its rescue by pomegranate polyphenols.
Abstract: Molecular mechanisms involved in arsenic-induced toxicity are complex and elusive. Liver is one of the most favored organs for arsenic toxicity as methylation of arsenic occurs mostly in the liver. In this study, we have selected a range of environmentally relevant doses of arsenic to examine the basis of arsenic toxicity and the role of pomegranate fruit extract (PFE) in combating it. Male Swiss albino mice exposed to different doses of arsenic presented marked hepatic injury as evident from histological and electron microscopic studies. Increased activities of enzymes alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase and alkaline phosphatase corroborated extensive liver damage. It was further noted that arsenic exposure initiated reactive oxygen species (ROS)-dependent apoptosis in the hepatocytes involving loss of mitochondrial membrane potential. Arsenic significantly increased nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor-κB (NF-κB), coupled with increase in phosphorylated Iκ-B, possibly as adaptive cellular survival strategies. Arsenic-induced oxidative DNA damage to liver cells culminated in p53 activation and increased expression of p53 targets like miR-34a and Bax. Pomegranate polyphenols are known to possess remarkable antioxidant properties and are capable of protecting normal cells from various stimuli-induced oxidative stress and toxicities. We explored the protective role of PFE in ameliorating arsenic-induced hepatic damage. PFE was shown to reduce ROS generation in hepatocytes, thereby reducing arsenic-induced Nrf2 activation. PFE also inhibited arsenic-induced NF-κB-inflammatory pathway. Data revealed that PFE reversed arsenic-induced hepatotoxicity and apoptosis by modulating the ROS/Nrf2/p53-miR-34a axis. For the first time, we have mapped the possible signaling pathways associated with arsenic-induced hepatotoxicity and its rescue by pomegranate polyphenols.

Journal ArticleDOI
TL;DR: Oral administration of 2'-FL exclusively during lactation enhanced cognitive abilities, not only in childhood but also in adulthood.
Abstract: Human milk oligosaccharides have been proposed to exert beneficial effects on brain development. During the last decades, most of the studies have focused on the evaluation of sialylated structures but recent experiments have also tested fucosylated oligosaccharides, i.e. 2′-fucosyllactose (2′-FL). The present study aimed to determine whether oral 2′-FL has an effect on the development of newborn brain, contributing to enhance cognitive skills later in life. Rat pups received an oral supplementation of 2′-FL (2′-FL group) or water (control group) during the lactation period. Thereafter, animals were maintained on a rodent standard diet. Rats ( n = 12 rats/group) were evaluated twice, at age 4–6 weeks and again at age 1 year, using classical behavioral tests. In vivo long-term potentiation (LTP) was also performed at the same ages ( n = 10 rats/group). Both groups showed similar behavior when the animals were assessed just after weaning (age 4–6 weeks), although the 2′-FL group seemed to perform slightly better in Morris Water Maze. At age 1 year, 2′-FL rats performed significantly better in the Novel Object Recognition and Y maze paradigms, when compared to controls. In addition, LTP was more intense and longer lasting in the rats supplemented with 2′-FL than in control animals, both in young and adult animals. Oral administration of 2′-FL exclusively during lactation enhanced cognitive abilities, not only in childhood but also in adulthood.