scispace - formally typeset
Search or ask a question

Showing papers in "Materials and Structures in 2011"


Journal ArticleDOI
TL;DR: In this paper, the influence of different amounts of recycled coarse aggregates obtained from a demolished RCC culvert 15 years old on the properties of recycled aggregate concrete (RAC) was investigated.
Abstract: This paper investigates the influence of different amounts of recycled coarse aggregates obtained from a demolished RCC culvert 15 years old on the properties of recycled aggregate concrete (RAC). A new term called “coarse aggregate replacement ratio (CRR)” is introduced and is defined as the ratio of weight of recycled coarse aggregate to the total weight of coarse aggregate in a concrete mix. To analyze the behaviour of concrete in both the fresh and hardened state, a coarse aggregate replacement ratio of 0, 0.25, 0.50 and 1.0 are adopted in the concrete mixes. The properties namely compressive and indirect tensile strengths, modulus of elasticity, water absorption, volume of voids, density of hardened concrete and depth of chloride penetration are studied. From the experimental results it is observed that the concrete cured in air after 7 days of wet curing shows better strength than concrete cured completely under water for 28 days for all coarse aggregate replacement ratios. The volume of voids and water absorption of recycled aggregate concrete are 2.61 and 1.82% higher than those of normal concrete due to the high absorption capacity of old mortar adhered to recycled aggregates. The relationships among compressive strength, tensile strengths and modulus of elasticity are developed and verified with the models reported in the literature for both normal and recycled aggregate concrete. In addition, the non-destructive testing parameters such as rebound number and UPV (Ultrasonic pulse velocity) are reported. The study demonstrates the potential use of field recycled coarse aggregates (RCA) in concrete.

375 citations


Journal ArticleDOI
TL;DR: In this article, an ultra high performance fiber reinforced concretes (UHP-FRC) with a compressive strength of 200 MPa (29 ksi) providing high bond strength between fiber and matrix was developed.
Abstract: This research work focuses on the optimization of strength and ductility of ultra high performance fiber reinforced concretes (UHP-FRC) under direct tensile loading. An ultra high performance concrete (UHPC) with a compressive strength of 200 MPa (29 ksi) providing high bond strength between fiber and matrix was developed. In addition to the high strength smooth steel fibers, currently used for typical UHP-FRC, high strength deformed steel fibers were used in this study to enhance the mechanical bond and ductility. The study first shows that, with appropriate high strength steel fibers, a fiber volume fraction of 1% is sufficient to trigger strain hardening behavior accompanied by multiple cracking, a characteristic essential to achieve high ductility. By improving both the matrix and fiber parameters, an UHP-FRC with only 1.5% deformed steel fibers by volume resulted in an average tensile strength of 13 MPa (1.9 ksi) and a maximum post-cracking strain of 0.6%.

357 citations


Journal ArticleDOI
TL;DR: In this article, the bond strength of fly ash-based geopolymer concrete with reinforcing steel was evaluated using a pullout test in accordance with the ASTM A944 Standard.
Abstract: Geopolymer concrete (GPC) is an emerging construction material that uses a by-product material such as fly ash as a complete substitute for cement. This paper evaluates the bond strength of fly ash based geopolymer concrete with reinforcing steel. Pull-out test in accordance with the ASTM A944 Standard was carried out on 24 geopolymer concrete and 24 ordinary Portland cement (OPC) concrete beam-end specimens, and the bond strengths of the two types of concrete were compared. The compressive strength of geopolymer concrete varied from 25 to 39 MPa. The other test parameters were concrete cover and bar diameter. The reinforcing steel was 20 mm and 24 mm diameter 500 MPa steel deformed bars. The concrete cover to bar diameter ratio varied from 1.71 to 3.62. Failure occurred with the splitting of concrete in the region bonded with the steel bar, in both geopolymer and OPC concrete specimens. Comparison of the test results shows that geopolymer concrete has higher bond strength than OPC concrete. This is because of the higher splitting tensile strength of geopolymer concrete than of OPC concrete of the same compressive strength. A comparison between the splitting tensile strengths of OPC and geopolymer concrete of compressive strengths ranging from 25 to 89 MPa shows that geopolymer concrete has higher splitting tensile strength than OPC concrete. This suggests that the existing analytical expressions for bond strength of OPC concrete can be conservatively used for calculation of bond strength of geopolymer concrete with reinforcing steel.

242 citations


Journal ArticleDOI
TL;DR: In this paper, a deflection-hardening steel fiber reinforced concrete (DHFRCC) was developed for roof elements, which have been employed to manufacture thin (30 mm) roof elements without any kind of conventional reinforcement.
Abstract: Governing the dispersion and the orientation of fibres in concrete through a suitably balanced set of fresh state properties and a carefully designed casting procedure, is a feasible and cost-effective way to achieve a superior mechanical performance of fibre reinforced cementitious composites, which may be required by the intended application, even keeping the fibre content at relatively low values (e.g. around 1% by volume). In this paper the possibility of pursuing the above said “integrated” approach has been addressed in the framework of larger project focused on developing a deflection-hardening FRCC (DHFRCC), reinforced with 100 kg/m3 (1.27% by volume) of short steel fibres (13 mm long and 0.16 mm in diameter). The material has to be employed to manufacture thin (30 mm) roof elements, without any kind of conventional reinforcement, which have been anticipated to work, as simply supported beams, over a 2.5 m span. The study hence paves the way to the possibility of exploiting at an industrial level the correlation among fresh state performance, fibre dispersion and hardened state properties of self consolidating steel fibre reinforced concrete to achieve enhanced structural performance tailored to the specific application.

234 citations


Journal ArticleDOI
TL;DR: In this paper, a number of artificial pozzolans were investigated, including Ground Granulated Blastfurnace Slag (GGBS), Leca, Pulverised Fuel Ash (PFA), Calcined Clay (Metastar), Microsilica (MS), Rice Husk Ash (RHA), Red Brick Dust (RBD), Tile and Yellow Brick Dusters (YBD), and RBD.
Abstract: This paper studies how pozzolan properties including particle size, specific surface, chemical and mineral composition, amorphousness and water demand, affect their reactivity as well as the strength of lime–pozzolan pastes. Reactivity was evaluated with chemical, mechanical and mineralogical methods. A number of artificial pozzolans were investigated including Ground Granulated Blastfurnace Slag (GGBS); Leca; Pulverised Fuel Ash (PFA); Calcined Clay (Metastar); Microsilica (MS); Rice Husk Ash (RHA); Red Brick Dust (RBD); Tile and Yellow Brick Dust (YBD). The paper concludes that the pozzolan’s specific surface has a much greater influence on the water demand of the paste than its particle size or the lime:pozzolan ratio. It was evidenced that each pozzolan has a particular water demand for a given workability that increased with its specific surface; and that the replacement of lime by pozzolan lowers the water demand of the paste except for Metastar, on account of its greater fineness and specific surface. There is a good correlation between the chemical and physical activity indices and the rate of portlandite consumption. These evidenced that the most amorphous pozzolans (Metastar, GGBS, RHA and MS) are the most active. Finally, it also appears from the results, that the amount of lime combined by reactive crystalline phases in the pozzolans is insignificant when compared to that bound by their amorphous fraction. The paper concludes that amorphousness determines pozzolan reactivity to a much greater extent than any other pozzolan property. It also concludes that the specific surface area of the pozzolan governs the water demand of the paste, while amorphousness largely determines the strength of the paste. In contrast, the chemical composition of the pozzolan is not instrumental as a variable affecting neither pozzolan reactivity nor the strength of the paste.

185 citations


Journal ArticleDOI
TL;DR: In this paper, the authors summarized practical and theoretical approaches from research done regarding joints with glued-in steel rods mostly in Europe and published in English, German or Swedish and considered manufacturing methods, mechanisms and parameters governing the performance and strength of the joints, theoretical approaches and existing design recommendations.
Abstract: Adhesive joints have been known and applied for timber structures for decades. Hybrid joints with glued-in rods are nowadays successfully used for both constructing new and strengthening existing timber structures. Since the 1980s the research and development of timber joints with bonded-in rods have been going on, however agreement regarding design criteria for these connections has not been reached. Today, connections with glued-in rods are not included in the European design code. Thus, it is desired to gather the current state of knowledge to enable application in practice of the existing and documented knowledge and experience. This paper summarizes practical and theoretical approaches from research done regarding joints with glued-in steel rods mostly in Europe and published in English, German or Swedish. The review considers manufacturing methods, mechanisms and parameters governing the performance and strength of the joints, theoretical approaches and existing design recommendations.

164 citations


Journal ArticleDOI
TL;DR: In this article, the effects of drying conditions on the autogenous shrinkage of ultra-high performance concrete (UHPC) at early-ages were investigated, and the results indicate that adequate curing is essential for reducing shrinkage in UHPC even when different shrinkage mitigation methods are applied.
Abstract: This experimental study investigated the effects of drying conditions on the autogenous shrinkage of ultra-high performance concrete (UHPC) at early-ages. UHPC specimens were exposed to different temperatures, namely, 10, 20 and 40°C under a relative humidity (RH) ranging from 40 to 80%. The effects of using a shrinkage-reducing admixture (SRA) and a superabsorbent polymer (SAP) as shrinkage mitigation methods were also investigated. The results show that autogenous and drying shrinkage are dependent phenomena. Assuming the validity of the conventional superposition principle between drying and autogenous shrinkage led to overestimating the actual autogenous shrinkage under drying conditions; the level of overestimation increased with decreasing RH. Both SRA and SAP were very effective in reducing autogenous shrinkage under sealed conditions. However, SRA was efficient in reducing drying shrinkage under drying conditions, while SAP was found to increase drying shrinkage. Generally, results indicate that adequate curing is essential for reducing shrinkage in UHPC even when different shrinkage mitigation methods are applied.

141 citations


Journal ArticleDOI
TL;DR: In this article, the authors present an experimental study on the properties and on the durability of concrete containing ceramic wastes, and assess the mechanical and durability performance of ceramic waste-based concrete by means of mechanical tests.
Abstract: This paper presents an experimental study on the properties and on the durability of concrete containing ceramic wastes. Several concrete mixes possessing a target mean compressive strength of 30 MPa were prepared with 20% cement replacement by ceramic powder (W/B = 0.6). A concrete mix with ceramic sand and granite aggregates were also prepared as well as a concrete mix with natural sand and coarse ceramic aggregates (W/B = 0.5). The mechanical and durability performance of ceramic waste based concrete are assessed by means of mechanical tests, water performance, permeability, chloride diffusion and also accelerated aging tests. Results show that concrete with partial cement replacement by ceramic powder although it has minor strength loss possess increase durability performance. Results also shows that concrete mixtures with ceramic aggregates perform better than the control concrete mixtures concerning compressive strength, capillarity water absorption, oxygen permeability and chloride diffusion. The replacement of cement and aggregates in concrete by ceramic wastes will have major environmental benefits.

138 citations


Journal ArticleDOI
TL;DR: In this article, the effects of the addition of limestone filler on the hydration rate, setting times and early-age mechanical properties of binary and ternary-binder mortars containing Portland cement, blast furnace slag (BFS) and fly ash (FA), with various substitution rates of cement with mineral additions going up to 50%.
Abstract: This article analyzes the effects of the addition of limestone filler on the hydration rate, setting times and early-age mechanical properties of binary and ternary-binder mortars containing Portland cement, blast furnace slag (BFS) and fly ash (FA), with various substitution rates of cement with mineral additions going up to 50%. Vicat needle penetration tests and measurements of heat flow of reaction, compressive strength and dynamic Young’s modulus were carried out on 14 mortars prepared with binary and ternary binders, at 20°C. The results obtained on the mortars containing binary binders, show that their loss of mechanical strength at early age is not caused by a deceleration of the reactions of cement in the presence of mineral additions, but is mainly explained by the dilution effect related to the reduction in cement content. A moderate addition of limestone filler (8–17%) makes it possible to obtain ternary binders with early-age reactivity equal or even higher than that of Portland cement, and with 28-days mechanical resistance close to those of the binary-binder mortars. This accelerating effect of limestone filler is particularly sensitive in the case of mortars containing FA.

122 citations


Journal ArticleDOI
TL;DR: In this article, the dynamic mechanical properties of compacted samples of synthetic calcium silicate hydrate (C-S-H) were determined at variable stoichiometries (C/S ratio) at various increments of mass loss from 11%RH following the removal of the adsorbed and interlayer water.
Abstract: The dynamic mechanical properties of compacted samples of synthetic calcium silicate hydrate (C–S–H) were determined at variable stoichiometries (C/S ratio). The stiffness and damping properties of the C–S–H systems were monitored at various increments of mass loss from 11%RH following the removal of the adsorbed and interlayer water. The changes in the storage modulus (E′) and internal friction (tan δ) were discussed in terms of the state of water present in the nanostructure of C–S–H, the evolution of the silicate structure and the interaction of calcium ions in the interlayer region. Results were compared to those for the hydrated Portland cement paste and porous glass. It was shown that the C–S–H in the hydrated Portland cement has a complex yet analogous dynamic mechanical behavior to that of the synthetic C–S–H. The response of these systems upon the removal of water was explained by a layered model for the C–S–H. A mechanistic model was proposed to describe the changes occurring at various stages in the dynamic mechanical response of C–S–H.

119 citations


Journal ArticleDOI
TL;DR: In this paper, an experimental program was carried out to determine the compressive strength, abrasion resistance, and energy absorption capacity of rubberized concretes with and without ground granulated blast furnace slag (GGBFS).
Abstract: It has been estimated that around one billion tires are withdrawn from use in the world every year. Therefore, the development of new techniques for recycling waste tires is necessary. A number of innovative solutions that meet the challenge of the tire disposal problem involve using waste as an additive to cement-based materials. In this study, an experimental program was carried out to determine the compressive strength, abrasion resistance, and energy absorption capacity of rubberized concretes with and without ground granulated blast furnace slag (GGBFS). For this purpose, a water–binder ratio (0.4), four designated levels of crumb rubber (CR) contents (0, 5, 15 and 25% by fine aggregate volume), and three levels of GGBFS content (0, 20, and 40%) were considered as experimental parameters. In total, 12 concrete mixtures were cast and tested for compressive strength, abrasion resistance, and energy absorption capacity. Test results indicate that using CR aggregate decreases compressive strength and abrasion resistance of the concretes, but increases energy absorption capacity significantly.

Journal ArticleDOI
TL;DR: In this paper, the effect of fibers content, sand-bitumen ratio and the combination of fillers and fibers on the induction heating of mastic was investigated, and it was found that there is an optimum content of fibers for each sand bitumen ratio, above which mastic cannot be heated any more.
Abstract: The objective of this research is to examine the induction heating of mastic through the addition of electrically conductive fillers and fibers (graphite and steel wool), and to prove that this material can be healed with induction energy. The effect of fibers content, sand-bitumen ratio and the combination of fillers and fibers on the induction heating of mastic was investigated. It was found that there is an optimum content of fibers for each sand-bitumen ratio, above which mastic cannot be heated any more. This optimum seems to coincide with the optimum electrical conductivity of the mixture shown in [1]. It was found that the maximum temperature reached within a certain time period was a function of the sand-bitumen ratio (s-b) and of the volume content of fibers. The mastic could be heated with the addition of a very low volume of conductive fibers. The fastest heating power was obtained with the mix with the maximum electrical conductivity. Gel-Permeation Chromatography (GPC) was also used to show that there is not ageing of bitumen during the heating process. © 2010 The Author(s).

Journal ArticleDOI
TL;DR: In this article, the performance of a series of sewer pipe concrete mixtures and cementitious lining mixtures in acid environments was reported, with both acid-soluble and acid-insoluble aggregates and various supplementary cementitious materials (SCM).
Abstract: The paper reports on the performance of a series of sewer pipe concrete mixtures and cementitious lining mixtures in acid environments. Binder types based on ordinary portland cement (OPC) and calcium aluminate cement (CAC) were used, with both acid-soluble and acid-insoluble aggregates and various supplementary cementitious materials (SCM). One series of tests subjected the mixtures to pure mineral acid (hydrochloric acid, pH = 1), using a specially designed dynamic test rig. The other series of tests involved monitoring specimens placed in a live sewer under very aggressive conditions induced by acid-generating bacteria. Under mineral acid attack on concretes with conventional dolomite aggregates, OPC/silica fume concretes displayed best performance, attributed to their densified microstructure coupled with substantially improved ITZ. CAC concretes with dolomite aggregate did not perform any better than similar OPC specimens under these conditions, primarily because of their higher porosity. However, with concretes using synthetic alagTM aggregates in mineral acid testing, CAC/alagTM mixtures performed exceptionally well due to their homogeneous microstructure, inferred absence of an ITZ, and slower dissolution and finer size of alagTM aggregate particles. The dynamic acid test was able to reveal differences in physical and chemical interactions between constituents in concrete mixes. Under biogenic acid conditions in the sewer, CAC concretes clearly outperformed OPC concretes. This is ascribed to the ability of CAC to stifle the metabolism of the acid-generating bacteria, thereby reducing acid generation. Thus the effects of neutralisation capacity and stifling of bacterial activity need to be distinguished in designing concrete mixtures to provide good acid resistance. Relative rates of dissolution of binder and aggregates are also important in overall performance, with uniform rates preferable in order to avoid aggregate fallout.

Journal ArticleDOI
TL;DR: In this paper, a new concept of orientation profile was introduced to characterize fiber orientation through an unambiguous method, and it was observed that fiber orientation follows a Gaussian law and that the distribution and average values of single fiber orientations are correlated with each other.
Abstract: The orientation of fibers has a pronounced influence on the tensile behavior of steel fiber reinforced concrete (SFRC) and, consequently, this aspect should be considered in modeling the material constitutive law. Previous works have shown that the tensile strength of SFRC is directly related to the average orientation of the fibers. However, few studies have investigated the correlation between the variation of distribution of fiber orientation and material strength. This paper introduces a new concept of orientation profile in order to characterize fiber orientation through an unambiguous method. From the investigation on experimental data it could be observed that fiber orientation follows a Gaussian law and that the distribution and average values of single fiber orientations are correlated with each other. Conclusions from this paper are particularly relevant for the development of micromechanical models for SFRC.

Journal ArticleDOI
TL;DR: In this article, the effects of the thermally cracking process considering the heterogeneity of the material properties on the spalling in concrete exposed to a transient thermal load are investigated, and it is shown that the thermal cracking is the key factor causing the corner and surface spalling.
Abstract: This paper presents a review of explosive spalling of concrete at elevated temperatures. The affecting factors, mechanisms and current theoretical and experimental studies are summarized. Using a numerical model proposed by the authors, numerical simulations were performed to investigate the effects of the thermally cracking process considering the effects of heterogeneity of the material properties on the spalling in concrete exposed to a transient thermal load. The investigations showed that the thermal cracking is the key factor causing the corner and surface spalling, and suggested that a coupling of thermal cracking and pore pressure is the main cause of explosive spalling and uncertainty of explosive spalling. The explosive spalling induced by elevated temperatures is a complex nonlinear problem, which can be understood only through establishing a methodology using behavioral aspects for both material science and mechanics.

Journal ArticleDOI
TL;DR: In this paper, the compaction characteristics and physical properties of compacted cement stabilised soil mixtures and cement stabilized rammed earth (CSRE) were investigated. And the results showed that compaction properties of stabilised soils are not affected by the addition of cement, and there is 50% fall in strength of CSRE for 10 h time lag.
Abstract: Rammed earth is used for load bearing walls of buildings and there is growing interest in this low carbon building material. This paper is focused on understanding the compaction characteristics and physical properties of compacted cement stabilised soil mixtures and cement stabilised rammed earth (CSRE). This experimental study addresses (a) influence of soil composition, cement content, time lag on compaction characteristics of stabilised soils and CSRE and (b) effect of moulding water content and density on compressive strength and water absorption of compacted cement stabilised soil mixes. Salient conclusions of the study are (a) compaction characteristics of soils are not affected by the addition of cement, (b) there is 50% fall in strength of CSRE for 10 h time lag, (c) compressive strength of compacted cement stabilised soil increases with increase in density irrespective of moulding moisture content and cement content, and (d) compressive strength increases with the increase in moulding water content and compaction of CSRE on the wet side of OMC is beneficial in terms of strength.

Journal ArticleDOI
TL;DR: In this paper, the authors evaluated the possibility of measuring the damage of the recycled concrete and concluded that scalar damage mechanics (based on the variations of the elastic modulus) and volumetric strains curves can be used to quantify the damaged concrete.
Abstract: This study evaluates the possibility of measuring the damage of the recycled concrete. In this way, two conventional concretes with a w/c ratio of 0.55 and 0.65 were designed. Based on them, six recycled concretes with different percentages of replacement of natural coarse aggregates with recycled coarse aggregate (20, 50 and 100%) were obtained. To take into account the high absorption capacity of the recycled aggregates, before using them they were pre-wetted for 10 min. The results concluded that scalar damage mechanics (based on the variations of the elastic modulus) and volumetric strains curves can be use to quantify the damage of the recycled concrete. The results from both approaches indicated that the damage to concrete depended on the percentage of replacement, increasing with higher replacement percentages. Additionally, values of the damage, that are quantified using the critical stress and according to the scalar damage mechanics, are given.

Journal ArticleDOI
TL;DR: Experimental results on the strain hardening and multiple cracking behaviors of polyvinyl alcohol (PVA) fiber reinforced cementitious composites under bending are reported in this article, where different hybrid combinations of PVA fibers with different lengths and volume fractions are considered to reinforce the mortar matrix.
Abstract: Experimental results on the strain hardening and multiple cracking behaviors of polyvinyl alcohol (PVA) fiber reinforced cementitious composites under bending are reported in this paper Different hybrid combinations of PVA fibers with different lengths and volume fractions are considered to reinforce the mortar matrix Among different hybrid combinations, the composite containing 2% thicker PVA fibers of 12 mm length and 1% thinner PVA fibers of 6 mm length and the composite containing 2% thicker PVA fibers of 24 mm length and 1% thinner PVA fibers of 6 mm length showed the best performance in terms of highest ultimate load, largest CMOD (crack mouth opening displacement) at peak load and multiple cracking behavior The effects of four types of light weight sands on the strain hardening and multiple cracking behavior of hybrid fiber composites are also evaluated in this study It has been observed that the ultimate load and CMOD at peak load for all light weight hybrid fiber composites are almost the same irrespective of volume fractions of light weight sand The composites containing finer light weight sands exhibited higher ultimate load than those containing coarser light weight sands It is also observed that the hybrid fiber composite containing normal silica sand exhibited higher ultimate load than the composites with light weight sands

Journal ArticleDOI
TL;DR: In this article, an experimental research was performed on the complete compressive stress-strain relationship for unconfined and confined concrete after exposure to freeze-thaw cycles, where the main parameters were established, including the compressive strength, peak strain and elastic modulus.
Abstract: An experimental research was performed on the complete compressive stress–strain relationship for unconfined and confined concrete after exposure to freeze–thaw cycles. For the unconfined concrete, tests were carried out on three series of prisms specimens (100 mm × 100 mm × 300 mm) with water/cement ratio of 0.60, 0.54 and 0.48 respectively. While for confined concrete, two series of tied columns (150 mm × 150 mm × 450 mm prisms) with confinement index of 0.317 and 0.145 were prepared. Analytical models for the stress–strain relationship of frozen-thawed unconfined and confined concrete were empirically developed respectively. Through the regression analysis, formulations for the main parameters were established, including the compressive strength, peak strain and elastic modulus. Compared with the available experimental data, the proposed models were shown to be applicable to concrete after different numbers of freeze–thaw cycles.

Journal ArticleDOI
TL;DR: In this paper, carbon fibers were added to fresh geopolymer mix to enhance its electrical conductivity, and an AC-impedance spectroscopy analysis was performed on sample specimens to obtain their electrical resistance.
Abstract: Health monitoring of concrete structures is performed by assessing the structure’s state of stress. One such method involves monitoring electrical resistance variations as an indirect measure of stress variations. Carbon fibers were added to fresh geopolymer mix to enhance its electrical conductivity. AC-impedance spectroscopy analyses were performed on sample specimens to obtain their electrical resistance. Geopolymer concrete specimens entrained with carbon fibers were dynamically loaded in bending and uniaxial compression to observe changes in electrical resistance with respect to variations in their stress state. For beam specimens electrical resistance was found to follow a descending trend with increasing bending stresses. A more complex relationship was noted for cylinder specimens that were loaded axially. Overall experimental results suggest that conductive geopolymer could serve as a smart material in health monitoring applications of concrete structures.

Journal ArticleDOI
TL;DR: In this article, a comparison between OPC and 35% slag paste hydrates is made, shedding light on differences in the amount and form of hydrated phases present, especially the absence of ettringite in the 35% salt paste.
Abstract: This work aims to determine the fundamental similarities and/or differences between OPC and OPC/slag paste hydrates. OPC and 35% slag pastes are investigated using five techniques: 29Si NMR, 27Al NMR, X-ray diffraction (XRD), infrared (IR) and synchrotron near edge X-ray absorption fine structure (NEXAFS) spectroscopy. 29Si NMR provides valuable information related to the formation of the C–S–H gel, the main hydrated phase of the cement paste. 27Al NMR is a useful tool to characterize calcium aluminates and aluminate hydrates such as ettringite and monosulphate hydrate. XRD identifies polycrystalline phases of the hardened cement paste, including ettringite, monosulphate and CaOH2. Vibrational frequencies in IR assist in identifying the silicate, sulphate and carbonate phases of the cement paste. As far as we are aware, Si K-edge NEXAFS has never been applied in cement research and its advantages and disadvantages are discussed. Using these techniques, a comparison between OPC and 35% slag paste hydrates is made, shedding light on differences in the amount and form of hydrated phases present, especially the absence of ettringite in the 35% slag paste.

Journal ArticleDOI
TL;DR: In this article, the authors examined the strength and elastic properties of CSRE and found that the strength is highly sensitive to density and for a 20% increase in density the strength increases by 300-500% and the ultimate strain at failure for CSRE is as high as 1.5%, which is unusual for brittle materials.
Abstract: Strength and behaviour of cement stabilised rammed earth (CSRE) is a scantily explored area. The present study is focused on the strength and elastic properties of CSRE. Characteristics of CSRE are influenced by soil composition, density of rammed earth, cement and moisture content. The study is focused on examining (a) role of clay content of the soil on strength of CSRE and arriving at optimum clay fraction of the soil mix, (b) influence of moisture content, cement content and density on strength and (c) stress–strain relationships and elastic properties for CSRE. Major conclusions are (a) there is considerable difference between dry and wet compressive strength of CSRE and the wet to dry strength ratio depends upon the clay fraction of soil mix and cement content, (b) optimum clay fraction yielding maximum compressive strength for CSRE is about 16%, (c) strength of CSRE is highly sensitive to density and for a 20% increase in density the strength increases by 300–500% and (d) in dry state the ultimate strain at failure for CSRE is as high as 1.5%, which is unusual for brittle materials.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated whether SFS can successfully be used as a sand replacement material in cost-effective, green, self-consolidating concrete (SCC).
Abstract: In the United States alone, the foundry industry discards up to 10 million tons of sand each year, offering up a plentiful potential resource to replace sand in concrete products. However, because the use of spent foundry sand (SFS) is currently very limited in the concrete industry, this study investigates whether SFS can successfully be used as a sand replacement material in cost-effective, green, self-consolidating concrete (SCC). In the study, SCC mixtures were developed to be even more inexpensive and environmentally friendly by incorporating Portland cement with fly ash (FA). Tests done on SCC mixtures to determine fresh properties (slump flow diameter, slump flow time, V-funnel flow time, yield stress, and relative viscosity), compressive strength, drying shrinkage and transport properties (rapid chloride permeability and volume of permeable pores) show that replacing up to 100% of sand with SFS and up to 70% Portland cement with FA enables the manufacture of green, lower cost SCC mixtures with proper fresh, mechanical and durability properties. The beneficial effects of FA compensate for some possible detrimental effects of SFS.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the possibility of utilizing steel slags produced in Croatian plants as a concrete aggregate and determined aggregate properties on coarse slag fractions according to the relevant European Standards.
Abstract: This paper aims to investigate the possibility of utilizing steel slags produced in Croatian plants as a concrete aggregate. Aggregate properties were determined on coarse slag fractions (4–8, 8–16 mm) according to the relevant European Standards. Considering the obtained results, slags were specified in accordance with the classes as given in the main European standard for aggregates, whereupon these classes were compared to the Croatian regulation requirements. The obtained results proved that coarse slag fractions can be suitable for concrete application. Therefore, concrete mixtures were prepared with coarse slag fractions whose hardened state properties (compressive and flexural strength, static modulus of elasticity, volume changes and corrosion susceptibility) were then compared with the properties of reference concrete made of commonly used natural aggregate materials, namely dolomite. According to the obtained test results it can be concluded that the observed slags can be a good substitute for natural aggregate materials.

Journal ArticleDOI
TL;DR: In this paper, an existing mesomechanical model for cementitious materials is extended to the domain of diffusion-driven phenomena, explicitly taking into account the influence of (micro) cracks on the diffusion of moisture.
Abstract: In this paper, an existing mesomechanical model for cementitious materials is extended to the domain of diffusion-driven phenomena. The model is based on the Finite Element Method, and uses zero-thickness interface elements equipped with a fracture-based constitutive formulation to represent cracks. The new developments presented in this paper consist of the application of the model to the hygro-mechanical coupled analysis of drying shrinkage in concrete specimens, explicitly taking into account the influence of (micro) cracks on the diffusion of moisture. In a first part of the paper, the model is presented in some detail, especially the new aspects regarding moisture diffusion including effects of cracks, and H-M coupling. The model predictions are then quantitatively compared with classical drying shrinkage experiments on concrete specimens. The consideration of different assumptions for the relation linking shrinkage strains and weight losses is discussed in some detail. Finally, the effect of size and volume fraction of the main heterogeneities of concrete on the drying process and drying-induced microcracking is also addressed.

Journal ArticleDOI
TL;DR: In this article, an experimental analysis of glulam beams made of Pinus caribea var. hondurensis species without and with externally-bonded fiber-reinforced polymer (FRP) and theoretical models were used to evaluate the bending strength and stiffness of the beams.
Abstract: The glued- laminated lumber (glulam) technique is an efficient process for the rational use of wood. Fiber-reinforced polymer (FRPs) associated with glulam beams provide significant improvements in strength and stiffness and alter the failure mode of these structural elements. In this context, this paper presents guidance for glulam beam production, an experimental analysis of glulam beams made of Pinus caribea var. hondurensis species without and with externally-bonded FRP and theoretical models to evaluate reinforced glulam beams (bending strength and stiffness). Concerning the bending strength of the beams, this paper aims only to analyze the limit state of ultimate strength in compression and tension. A specific disposal was used in order to avoid lateral buckling, once the tested beams have a higher ratio height-to-width. The results indicate the need of production control so as to guarantee a higher efficiency of the glulam beams. The FRP introduced in the tensile section of glulam beams resulted in improvements on their bending strength and stiffness due to the reinforcement thickness increase. During the beams testing, two failure stages were observed. The first was a tensile failure on the sheet positioned under the reinforcement layer, while the second occurred as a result of a preliminary compression yielding on the upper side of the lumber, followed by both a shear failure on the fiber-lumber interface and a tensile failure in wood. The model shows a good correlation between the experimental and estimated results.

Journal ArticleDOI
TL;DR: In this article, a coupled multi-species transport and chemical equilibrium model has been established to predict time dependent variation of pore solution and solid-phase composition in concrete, which can be used to calculate the variation in pore solutions and solid phases composition when using different types of cements.
Abstract: In this study, a coupled multi-species transport and chemical equilibrium model has been established. The model is capable of predicting time dependent variation of pore solution and solid-phase composition in concrete. Multi-species transport approaches, based on the Poisson–Nernst–Planck (PNP) theory alone, not involving chemical processes, have no real practical interest since the chemical action is very dominant for cement based materials. Coupled mass transport and chemical equilibrium models can be used to calculate the variation in pore solution and solid-phase composition when using different types of cements. For example, the physicochemical evaluation of steel corrosion initiation can be studied by calculating the molar ratio of chloride ion to hydroxide ion in the pore solution. The model can, further, for example, calculate changes of solid-phase composition caused by the penetration of seawater into the concrete cover. The mass transport part of the model is solved using a non-linear finite element approach adopting a modified Newton–Raphson technique for minimizing the residual error at each time step of the calculation. The chemical equilibrium part of the problem is solved by using the PHREEQC program. The coupling between the transport part and chemical part of the problem is tackled by using a sequential operator splitting technique and the calculation results are verified by comparing the elemental spacial distribution in concrete measured by the electron probe microanalysis (EPMA).

Journal ArticleDOI
TL;DR: In this article, the authors examined the improvements in strength development in lime-fly ash compacts through low temperature steam curing and use of additives like gypsum, and found that strength increases with increase in density irrespective of lime content, type of curing and moulding water content.
Abstract: Lime–fly ash mixtures are exploited for the manufacture of fly ash bricks finding applications in load bearing masonry. Lime–pozzolana reactions take place at a slow pace under ambient temperature conditions and hence very long curing durations are required to achieve meaningful strength values. The present investigation examines the improvements in strength development in lime–fly ash compacts through low temperature steam curing and use of additives like gypsum. Results of density–strength–moulding water content relationships, influence of lime–fly ash ratio, steam curing and role of gypsum on strength development, and characteristics of compacted lime–fly ash–gypsum bricks have been discussed. The test results reveal that (a) strength increases with increase in density irrespective of lime content, type of curing and moulding water content, (b) optimum lime–fly ash ratio yielding maximum strength is about 0.75 in the normal curing conditions, (c) 24 h of steam curing (at 80°C) is sufficient to achieve nearly possible maximum strength, (d) optimum gypsum content yielding maximum compressive strength is at 2%, (e) with gypsum additive it is possible to obtain lime–fly ash bricks or blocks having sufficient strength (>10 MPa) at 28 days of normal wet burlap curing.

Journal ArticleDOI
TL;DR: In this article, two types of two-component epoxy modified bitumen have been investigated by means of direct tensile tests (DTT), relaxation tests (RT), and dynamic shear rheometer (DSR) tests.
Abstract: Coal tar bearing emulsions were used in the Netherlands as binder in anti-skid surfaces for runways because of their perfect adhesion and fuel resistance properties. They are however toxic and will not be allowed anymore after 2010. Therefore alternatives need to be developed. As one of the alternatives, two types of two-component epoxy modified bitumen have been investigated by means of direct tensile tests (DTT), relaxation tests (RT) and dynamic shear rheometer (DSR) tests. The effect of the curing temperature on the strength development of the epoxy modified bitumen was tested. The results show that the tensile strength increases with increasing curing time and temperature. DTT and RT results indicate that this new epoxy modified bitumen has a much higher tensile strength, cures faster than a bitumen emulsion as a binder. Furthermore, it shows a good stress relaxation even at lower temperatures. The curing speed and the ultimate tensile strength after full curing can be easily adjusted. The DSR results show that the complex modulus of this epoxy modified binder is less susceptible to changes in temperature. The results also suggest that this epoxy modified bitumen has better anti-crack properties at lower temperature and less permanent deformation than bituminous binders at higher temperatures. All these results shows that this type of two-component epoxy modified bitumen can be promising as a binder in anti-skid layers.

Journal ArticleDOI
TL;DR: In this paper, three different bituminous layer systems (A, B and C) were compared to evaluate the abilities of small and large WTT devices to quantify road materials rutting performance.
Abstract: Rutting is one of the main failure modes in pavement structures subjected to mechanical loading. Wheel Tracking Testers (WTT) devices used to evaluate the rutting performance of bituminous mixtures were investigated by Working Group 3 (WG3) “Mechanical Tests for Bituminous Materials”, of the RILEM ATB Technical Committee 206. Three different bituminous layer systems (A, B and C) currently used in road construction were compared to evaluate the abilities of “small” and “large” WTT devices to quantify road materials rutting performance. The tested specimens were cut from large slabs extracted from the onsite pavement structures. Seven laboratories located in seven different countries, were involved in the testing program. Results show that the mean rate of rutting for “small” WTT devices is faster than for “large” WTT devices. Systems A and C show equivalent performance and can be considered good in terms of the European Standard’s requirement. Results from system B indicate poor performance and it does not comply with the specifications of the standard. Nevertheless, a visual evaluation of the rutting showed a very good performance on the road for systems A and B and no apparent difference could be noted between these two systems.