scispace - formally typeset
Search or ask a question

Showing papers in "Materials Research-ibero-american Journal of Materials in 2006"


Journal ArticleDOI
TL;DR: In this article, a new lightweight fiber/metal laminate (FML) has been developed, which combines metal and polymer composite laminates to create a synergistic effect on many properties.
Abstract: Weight reduction and improved damage tolerance characteristics were the prime drivers to develop new family of materials for the aerospace/aeronautical industry. Aiming this objective, a new lightweight Fiber/Metal Laminate (FML) has been developed. The combination of metal and polymer composite laminates can create a synergistic effect on many properties. The mechanical properties of FML shows improvements over the properties of both aluminum alloys and composite materials individually. Due to their excellent properties, FML are being used as fuselage skin structures of the next generation commercial aircrafts. One of the advantages of FML when compared with conventional carbon fiber/epoxy composites is the low moisture absorption. The moisture absorption in FML composites is slower when compared with polymer composites, even under the relatively harsh conditions, due to the barrier of the aluminum outer layers. Due to this favorable atmosphere, recently big companies such as EMBRAER, Aerospatiale, Boing, Airbus, and so one, starting to work with this kind of materials as an alternative to save money and to guarantee the security of their aircrafts.

461 citations


Journal ArticleDOI
TL;DR: In this paper, Fourier transform infrared spectroscopy (FTIR) spectra of PVA hydrogel samples showed the absorption regions of the specific chemical groups associated with poly(vinyl alcohol) (-OH, -CO, -CH2) and PVA/GA confirming the formation of crosslinked hydrogels (duplet -CH).
Abstract: Polyvinyl alcohol (PVA), PVA crosslinked with glutaraldehyde hydrogels (PVA/GA), PVA with tetraethylorthosilicate (PVA/TEOS) and PVA/GA/TEOS hybrids with recombinant MPB70 protein (rMPB70) incorporated were chemically characterized by Fourier transform infrared spectroscopy (FTIR). FTIR spectra of PVA hydrogel samples showed the absorption regions of the specific chemical groups associated with poly(vinyl alcohol) (-OH, -CO, -CH2) and PVA/GA confirming the formation of crosslinked hydrogel (duplet -CH). It was observed C-H broad alkyl stretching band (n = 2850-3000 cm-1) and typical strong hydroxyl bands for free alcohol (nonbonded -OH stretching band at n = 3600-3650 cm-1), and hydrogen bonded band (n = 3200-3570 cm-1). The most important vibration bands related to silane alcoxides have been verified on FTIR spectra of PVA/TEOS and PVA/GA/TEOS hybrids (Si-O-Si, n = 1080 and n = 450 cm-1; Si-OH, n = 950 cm-1). FTIR spectra of f PVA hydrogel with rMPB70 incorporated have indicated the specific groups usually found in protein structures, such as amides I, II and III, at 1680-1620 cm-1, 1580-1480 cm-1 and 1246 cm-1, respectively. These results have given strong evidence that recombinant protein rMPB70 was successfully adsorbed in the hydrogels and hybrids networks. These PVA based hydrogels and hybrids were further used in immunological assays (Enzyme-Linked Immunosorbent Assay - ELISA). Tests were performed to detect antibodies against rMPB70 protein in serum samples from bovines that were positive in the tuberculin test. Corresponding tests were carried out without PVA samples in microtiter plates as control. Similar results were found for commercially available microplates and PVA based hydrogels and hybrids developed in the present work regarding to immunoassay sensitivity and specificity response.

285 citations


Journal ArticleDOI
TL;DR: In this paper, the tensile properties of carbon fiber laminate composites were evaluated by tensile tests according to the ASTM D3039, and the results indicated the importance of the adequate combination of the polymeric matrix and the reinforcement arrangement in the structural composite manufacture.
Abstract: Carbon fabric/epoxy composites are materials used in aeronautical industry to manufacture several components as flaps, aileron, landing-gear doors and others. To evaluate these materials become important to know their mechanical properties, for example, the tensile strength. Tensile tests are usually performed in aeronautical industry to determinate tensile property data for material specifications, quality assurance and structural analysis. For this work, it was manufactured four different laminate families (F155/PW, F155/HS, F584/PW and F584/HS) using pre-impregnated materials (prepregs) based on F155TM and F584TM epoxy resins reinforced with carbon fiber fabric styles Plain Weave (PW) and Eight Harness Satin (8HS). The matrix F155TM code is an epoxy resin type DGEBA (diglycidil ether of bisphenol A) that contains a curing agent and the F584TM code is a modified epoxy resin type. The laminates were obtained by handing lay-up process following an appropriate curing cycle in autoclave. The samples were evaluated by tensile tests according to the ASTM D3039. The F584/PW laminates presented the highest values of tensile strength. However, the highest modulus results were determined for the 8HS composite laminates. The correlation of these results emphasizes the importance of the adequate combination of the polymeric matrix and the reinforcement arrangement in the structural composite manufacture. The microscopic analyses of the tested specimens show valid failure modes for composites used in aeronautical industry.

93 citations


Journal ArticleDOI
TL;DR: In this article, rice hull ash (RHA) and aqueous sodium hydroxide were used in open and closed reaction systems to produce a closed closed system at 200 °C.
Abstract: Sodium silicate is used as raw material for several purposes: silica gel production, preparation of catalysts, inks, load for medicines, concrete hardening accelerator, component of detergents and soaps, refractory constituent and deflocculant in clay slurries. In this work sodium silicate was produced by reacting rice hull ash (RHA) and aqueous sodium hydroxide, in open and closed reaction systems. The studied process variables were time, temperature of reaction and composition of the reaction mixture (expressed in terms of molar ratios NaOH/SiO2 and H2O/SiO2). About 90% silica conversion contained in the RHA into sodium silicate was achieved in closed system at 200 °C. The results showed that sodium silicate production from RHA can generate aggregate value to this residue.

80 citations


Journal ArticleDOI
TL;DR: In this paper, the authors carried out a chemical and structural characterization of two EAFD samples with different Zn contents using inductively coupled plasma (ICP), X ray diffractometry (XRD) and Mossbauer spectroscopy analysis.
Abstract: Electric arc furnace dust (EAFD) is a solid waste generated in the collection of particulate material during steelmaking process in electric arc furnace. The aim of this work is to carry out a chemical and structural characterization of two EAFD samples with different Zn contents. Optical emission spectroscopy via inductively coupled plasma (ICP), X ray diffractometry (XRD) and Mossbauer spectroscopy analysis were carried out in such EAFD samples. From XRD measurements, the samples exhibits the following phases: ZnFe2O4, Fe3O4, MgFe2O4, FeCr2O4, Ca0.15Fe2.85O4, MgO, Mn3O4, SiO2 and ZnO. The phases detected by Mossbauer spectroscopy were: ZnFe2O4, Fe3O4, Ca0.15Fe2.85O4 and FeCr2O4. Magnesium ferrite (MgFe2O4), observed in the XRD patterns as overlapped peaks, was not identified in the Mossbauer spectroscopy analysis.

41 citations


Journal ArticleDOI
TL;DR: In this paper, the fiber orientation influence in linear and cylindrical anisotropic elastic models of wood is analyzed and some examples of the linear model, which show the variation of elastic moduli with fiber orientation are presented.
Abstract: Wood is generally considered an anisotropic material. In terms of engineering elastic models, wood is usually treated as an orthotropic material. This paper presents an analysis of two principal anisotropic elastic models that are usually applied to wood. The first one, the linear orthotropic model, where the material axes L (Longitudinal), R( radial) and T(tangential) are coincident with the Cartesian axes (x, y, z), is more accepted as wood elastic model. The other one, the cylindrical orthotropic model is more adequate of the growth caracteristics of wood but more mathematically complex to be adopted in practical terms. Specifically due to its importance in wood elastic parameters, this paper deals with the fiber orientation influence in these models through adequate transformation of coordinates. As a final result, some examples of the linear model, which show the variation of elastic moduli, i.e., Young´s modulus and shear modulus, with fiber orientation are presented.

38 citations


Journal ArticleDOI
TL;DR: In this article, the phase-field method was applied to simulate the solidification of pure nickel dendrites and the results compared with those predicted by the solidization theory and with experimental data reported in the literature.
Abstract: The Phase-Field method was applied to simulate the solidification of pure nickel dendrites and the results compared with those predicted by the solidification theory and with experimental data reported in the literature. The model's behavior was tested with respect to some initial and boundary conditions. For an initial condition without supercooling, the smooth interface of the solid phase nucleated at the edges of the domain grew uniformly into the liquid region, without branching. In an initially supercooled melt, the interface became unstable under 260 K supercooling, generating ramifications into the liquid region. The phase-field results for dendrite tip velocity were close to experimental results reported in the literature for supercooling above 50 K, but they failed to describe correctly the nonlinear behavior predicted by the collision-limited growth theory and confirmed by experimental data for low supercooling levels.

35 citations


Journal ArticleDOI
TL;DR: In this paper, the Oliver-Pharr method was used to determine the zero tip surface contact point for flat surfaces, or at least when a very low degree of asperity is present (lower than 30 nm).
Abstract: The nanoindentation technique allows the determination of mechanical properties at nanometric scale. Hardness (H) and elastic modulus (E) profiles are usually determined by using the Oliver-Pharr method from the load/unload curves. This approach is valid only for flat surfaces, or at least, when a very low degree of asperity is present (lower than 30 nm). The basic statement is the determination of the zero tip-surface contact point. If a rough surface is present, errors can occur in determining this contact point and, as a consequence, the surface hardness and elastic modulus profiles are drastically altered resulting in under evaluated values. Surfaces with different roughness were produced by controlled nitrogen glow discharge process on titanium. The changed nitriding parameters were different N2/H2 atmospheres and temperatures (600 °C-900 °C). The most correct H and E profiles were obtained by using the contact stiffness analysis method, proposed here, that overcomes the surface roughness. The obtained results were compared with available literature data.

35 citations


Journal ArticleDOI
TL;DR: In this article, tire rubber particles (NaOH-treated and untreated) were investigated as possible crack stabilizer and toughness enhancer when added to cement paste through in situ crack propagation measurements using two different types of cement, type I/II and an Interground polypropylene Fiber Cement (IFC).
Abstract: Tire rubber particles (NaOH-treated and untreated) were investigated as possible crack stabilizer and toughness enhancer when added to cement paste through in situ crack propagation measurements using two different types of cement, type I/II and an Interground polypropylene Fiber Cement (IFC). Crack deflection and crack bridging were observed in specimens with untreated rubber in cement type I/II. Crack tip mechanisms associated with crack pinning and acrack arrest were present in type I/II cement and IFC with treated rubber particles. Crack tip mechanisms in IFC with treated rubber lead to the increase in CMOD at the ultimate load level. Crack wake mechanisms in IFC with untreated or treated rubber lead to strain hardening and strain softening behavior. Crack wake bridging mechanisms were replaced by multiple cracking mechanisms in the IFC specimens with treated rubber. The IFC specimens with untreated rubber inclusions provided the best results with respect to toughness enhancement.

34 citations


Journal ArticleDOI
TL;DR: Al2O3 and H3PO4/Al 2O3 catalysts were investigated in the conversion of oleic acid to biofuels and biolubricant at 1 atm and at 623 K as discussed by the authors.
Abstract: Al2O3 and H3PO4/Al2O3 catalysts were investigated in the conversion of oleic acid to biofuels and biolubricant at 1 atm and at 623 K The catalytic tests were performed in a fixed bed and continuous flow reactor, using an oleic acid-catalyst ratio of 4 and N2 as the carrier gas The reaction products were analyzed by gas chromatography and acidity measurements N2 adsorption-desorption, X ray diffraction, 31P nuclear magnetic resonance and FT-IR spectroscopy were also employed to evaluate the textural, structural and acidic properties of the catalysts The results showed that phosphoric acid impregnation improved the alumina decarboxylation activities, generating hydrocarbons in the range of gasoline, diesel oil and lubricant oil The best catalytic performance was achieved with the highest surface area alumina impregnated with H3PO4, which was the solid that allied high total acidity with a large quantity of mesopores

32 citations


Journal ArticleDOI
TL;DR: In this article, the magnetic properties of sintered samples of cobalt-zinc ferrites produced from the corresponding coprecipitate were calculated based on hysteresis curves (Hc).
Abstract: The magnetic properties of sintered samples of cobalt-zinc ferrites produced from the corresponding coprecipitate were calculated based on hysteresis curves (Hc). The Hc values confirmed that soft ferrites were obtained by the procedure. A possible relation between the magnetic hysteresis curves and the microstructure of the sintered samples was investigated. X ray diffraction, thermal analysis and scanning electron microscopy were used to characterize the microstructure and the phases present in the sintered ceramic pieces, as well as those of their coprecipitated tri-metallic hydroxide precursor powders. It was found that sintering of Co0.5Zn0.5Fe2O4 at 1400 °C led to "honeycombing" of the ferrite grains and that there was no single phase in the microstructure of a sample sintered at 1400 °C. Thus, a more complete study was made of the behavior of the microstructure at lower sintering temperatures, i.e., in the 1100-1350 °C range.

Journal ArticleDOI
TL;DR: In this paper, a theoretical model for designing reinforced glulam beams is presented, which allows for the calculation of the bending moment, the hypothetical distribution of linear strains along the height of the beam, and considers the wood has a linear elastic fragile behavior in tension parallel to the fibers and bilinear in compression parallel to them, initially elastic and subsequently inelastic.
Abstract: The glued-laminated lumber (glulam) technique is an efficient process for making rational use of wood. Fiber-Reinforced Polymers (FRPs) associated with glulam beams provide significant gains in terms of strength and stiffness, and also alter the mode of rupture of these structural elements. In this context, this paper presents a theoretical model for designing reinforced glulam beams. The model allows for the calculation of the bending moment, the hypothetical distribution of linear strains along the height of the beam, and considers the wood has a linear elastic fragile behavior in tension parallel to the fibers and bilinear in compression parallel to the fibers, initially elastic and subsequently inelastic, with a negative decline in the stress-strain diagram. The stiffness was calculated by the transformed section method. Twelve non-reinforced and fiberglass reinforced glulam beams were evaluated experimentally to validate the proposed theoretical model. The results obtained indicate good congruence between the experimental and theoretical values.

Journal ArticleDOI
TL;DR: In this paper, the temperature induced phase transition in MnAs was analyzed using X ray Rietveld refinement and the results showed the presence of the hexagonal phase (P63/mmc) at room temperature and the first-order structural-magnetic transition to the orthorhombic phase around 318 K was followed in detail.
Abstract: The temperature induced phase transition in MnAs is analyzed in this work using X ray Rietveld refinement. The results show the presence of the hexagonal phase (P63/mmc) at room temperature and the first-order structural-magnetic transition to the orthorhombic phase (Pnma) around 318 K was followed in detail. The MnAs magnetic characterization allowed to obtain the transition temperature and a maximum value of 47 J/(kg.K) for the measured magnetocaloric effect for a magnetic field variation of 5 T.

Journal ArticleDOI
TL;DR: In this article, the authors compared with similar ones processed from TiH 2 as a substitute for Ti which were also vacuum sintered at 1150 °C from greens with 60 to 86%d T, the compounds formed were CaO, TTCP and Ti 4 P 3 and for the higher %d T ones, besides those same products, CaTiO 3, Ti 5 P 3, and a phase containing Ti, Ca and P were detected.
Abstract: Titanium/hydroxyapatite (HAP) composites are candidate materials for biomedical applications as implants and hard tissue substitutes since they combine the good mechanical properties and biocompatibility of Ti with the excellent HAP bioactivity and osteointegration. In powder metallurgy processing of these composites, HAP decomposition promoted by Ti during powder sintering is found. In a previous work Ti-50v%HAP greens of 60% theoretical density (d T ) were vacuum sintered at 1150 °C and formation of CaO and Ca 4 O(PO 4 ) 2 (TTCP) resulting from the HAP decomposition, as well as Ti 4 P 3 at the Ti/HAP interfaces was obtained. In the present work those composites are compared with similar ones processed from TiH 2 as a substitute for Ti which were also vacuum sintered at 1150 °C from greens with 60 to 86%d T . For the lower %d T , the compounds formed were CaO, TTCP and Ti 4 P 3 and for the higher %d T ones, besides those same products, CaTiO 3 , Ti 5 P 3 and a phase containing Ti, Ca and P were detected.

Journal ArticleDOI
TL;DR: In this paper, the effects of styrene acrylic polymer and silica fume on the mineralogical composition of high-early-strength portland cement pastes after 28 days of hydration are presented.
Abstract: Mineral and organic additions are often used in mortars to improve their properties. Microstructural investigation concerning the effects of styrene acrylic polymer and silica fume on the mineralogical composition of high-early-strength portland cement pastes after 28 days of hydration are presented in this paper. Thermogravimetry and derivative thermogravimetry were used to study the interaction between polymers and cement, as well as the extent of pozzolanic reaction of the mortars with silica fume. Differential scanning calorimetry and X ray diffraction were used to investigate the cement hydration and the effect of the additions. The results showed that the addition of silica fume and polymer reduces the portlandite formation due to delaying of Portland cement hydration and pozzolanic reaction.

Journal ArticleDOI
TL;DR: In this paper, the phase composition of the formed scales of stainless steels was investigated using Mossbauer spectroscopy and x ray diffraction, and the main crystalline phases found in the oxidized materials at temperatures above 1100 °C were hematite and magnetite, whereas magnetite preferentially forms at higher temperatures.
Abstract: The oxidation behavior of AISI 304 and AISI 430 stainless steels was investigated from 1100 °C up to 1200 °C. Mossbauer spectroscopy and x ray diffraction were used to access the phase composition of the formed scales. The main crystalline phases found in the oxidized materials at temperatures above 1100 °C were hematite and magnetite for AISI 430 steel, and hematite and a spinel-like phase for AISI 304 steel. Hematite was found to be the dominant oxide at lower temperatures, whereas magnetite preferentially forms at higher temperatures. The activation energy for oxidation is smaller for AISI 430 steel in relation to AISI 304 steel in the range of studied temperatures, and therefore the AISI 430 steel is less resistant towards oxidation at high temperatures.

Journal ArticleDOI
TL;DR: In this article, a numerical simulation and experimental study of the Vickers indentation testing of WC-6Co specimens was performed using the commercial solver MARC™ and the numerical analysis was implemented by a three-dimensional finite element (FE) model.
Abstract: This paper describes a numerical simulation and experimental study of the Vickers indentation testing of WC-6Co specimens. The numerical analysis was implemented by a three-dimensional finite element (FE) model using the commercial solver MARC™. Hardness values predicted by this model agreed well with those obtained experimentally. It was also observed that the load-displacement curves obtained numerically were quite similar to those presented by the literature for the Vickers testing. The maximum principal stress field was used to locate the most expected areas for crack formation and propagation during the Vickers indentation testing of WC-6Co.

Journal ArticleDOI
TL;DR: In this paper, template-assisted Co nanowire arrays were prepared by electrodeposition into nanometer-sized pores of an alumite film using a two-electrode electrochemical cell.
Abstract: Nanostructured magnetic materials have great interest because of their applications in high-density magnetic information storage and for magnetic sensors. The electrodeposition of materials into porous alumina arrays is a suitable technique to produce nanomaterials, since highly ordered uniform nanomaterials can be obtained simply and cheaply. In this work, template-assisted Co nanowire arrays were prepared by electrodeposition into nanometer-sized pores of an alumite film using a two-electrode electrochemical cell. The Co nanowires were electrodeposited from a solution of 400 g/L of CoSO4.7H2O and 40 g/L of H3BO3. The morphology of the samples was investigated by means of TEM and AFM. The structural characteristic of the samples was examined using XRD, EDX and FTIR, which confirm the cobalt nanowire formation.

Journal ArticleDOI
TL;DR: In this paper, the properties and processing behavior of poly(3-hydroxybutyrate), P(3HB), and their blends with poly(e-caprolactone), PCL, have been investigated.
Abstract: Aiming the development of high-performance biodegradable polymer materials, the properties and the processing behavior of poly(3-hydroxybutyrate), P(3HB), and their blends with poly(e-caprolactone), PCL, have been investigated. The P(3HB) sample, obtained from sugarcane, had a molecular weight of 3.0 x 105 g.mol1, a crystallinity degree of 60%, a glass transition temperature (Tg), at - 0.8 °C, and a melting temperature at 171 °C. The molecular weight of PCL was 0.8 x 105 g.mol-1. Specimens of 70/30 wt. (%) P(3HB)/PCL blends obtained by injection molding showed tensile strength of 21.9 (± 0.4) MPa, modulus of 2.2 (± 0.3) GPa, and a relatively high elongation at break, 87 (± 20)%. DSC analyses of this blend showed two Tg´s, at - 10.6 °C for the P(3HB) matrix, and at - 62.9 °C for the PCL domains. The significant decrease on the Tg of P(3HB) evidences a partial miscibility of PCL in P(3HB). According to the Fox equation, the new Tg corresponds to a 92/8 wt. (%) P(3HB)/PCL composition.

Journal ArticleDOI
TL;DR: In this paper, CdTe thin films were deposited by close spaced sublimation (CSS) technique from different CDTe sources: particles, powder, compact powder, a paste made of CdTE and propylene glycol and source-plates.
Abstract: Unlike other thin film deposition techniques, close spaced sublimation (CSS) requires a short source-substrate distance. The kind of source used in this technique strongly affects the control of the deposition parameters, especially the deposition rate. When depositing CdTe thin films by CSS, the most common CdTe sources are: single-crystal or polycrystalline wafers, powders, pellets or pieces, a thick CdTe film deposited onto glass or molybdenum substrate (CdTe source-plate) and a sintered CdTe powder. In this work, CdTe thin films were deposited by CSS technique from different CdTe sources: particles, powder, compact powder, a paste made of CdTe and propylene glycol and source-plates (CdTe/Mo and CdTe/glass). The largest deposition rate was achieved when a paste made of CdTe and propylene glycol was used as the source. CdTe source-plates led to lower rates, probably due to the poor heat transmission, caused by the introduction of the plate substrate. The results also showed that compacting the powder the deposition rate increases due to the better thermal contact between powder particles.

Journal ArticleDOI
TL;DR: In this paper, in vitro studies of bioactive glass/polyhydroxybutyrate composites were carried out to evaluate the influence of the composition on the bioactivity through the presence of calcium phosphate (Ca-P) on the layer formed when the substrates were immerse in simulated body fluid (SBF).
Abstract: Bioactive materials can help bone reparation and regeneration by offering support to bone growth. In vitro studies of bioactive glass/polyhydroxybutyrate composites were carried out to evaluate the influence of the composition on the bioactivity through the presence of calcium phosphate (Ca-P) on the layer formed when the substrates were immerse in simulated body fluid (SBF). The in vitro tests were carried out by soaking the composites bioactive glass/polyhydroxybutyrate 30/70 and 40/60 in SBF. The surface of the composites was analyzed by Scanning Electron Microscopy (SEM) with Energy Dispersive Spectroscopy (EDS) and also via x ray Diffraction (XRD). The solutions were analyzed by Inductively Couple Plasma (ICP). SEM images show a formation of a Ca-P rich layer on surface of composites. XRD results characterized the layer as calcium hydrogen phosphate. Ca/P ratios found via EDS results show a value close to 1.67. According to ICP results, the Ca e P ions are from SBF.

Journal ArticleDOI
TL;DR: In this paper, quasi-static and impact bending properties of four aeronautical grade carbon-epoxy laminates have been determined and compared and it was concluded that great care should be taken with this material within the low energy impact regimen.
Abstract: In Part I of this study, quasi-static and impact bending properties of four aeronautical grade carbon-epoxy laminates have been determined and compared. Materials tested were unidirectional cross-ply (tape) and bidirectional woven textile (fabric) carbon fiber lay-up architectures, impregnated with standard and rubber-toughened resins, respectively, giving rise to 1.5 mm-thick laminates. Quasi-static mechanical properties assessed in transversal mode loading were modulus of elasticity, flexural strength and tenacity at the maximum load, whereas the net absorbed energy was determined under translaminar impact conditions. Two-dimensional woven carbon fiber reinforcements embedded in a rubber-toughened matrix presented the best mechanical performance under static loading. Under dynamic loading conditions, woven fiber fabric pre-forms were favorably sensitive to increasing impact energies regardless the nature of the employed epoxy resin. However, it was concluded that great care should be taken with this material within the low energy impact regimen.

Journal ArticleDOI
TL;DR: State University of Sao Paulo Department of Materials and Technology Fatigue and aeronautical materials research group as mentioned in this paper, which is a research group at the University of São Paulo in Brazil.
Abstract: State University of Sao Paulo Department of Materials and Technology Fatigue and aeronautical materials research group

Journal ArticleDOI
TL;DR: In this paper, a 5% mol Zn bioceramic in granular form (Zn-granules) for clinical applications and compared it with granules made from HA by using the same production route.
Abstract: Hydroxyapatite (HA) is capable of accepting substitute ions within its lattice, including zinc ions. Zinc is a trace element that activates the osteogenesis of osteoblastic cells and therefore plays an important role in the activity of alkaline phosphatase enzyme. The purpose of this work was to produce and characterize 5% mol Zn bioceramic in granular form (Zn-granules) for clinical applications and compare it with granules made from HA by using the same production route. Granules with addition of porogen agents were produced from powders of HA and zinc-containing HA by uniaxial pressing and heat treatment. The granules were subsequently ground and sieved. The results indicated that zinc contributed to the reduction of sample crystallinity and formed a biphasic structure after calcination at 1200 °C. Additionally, zinc release from granular material may have clinical applications as bone graft.

Journal ArticleDOI
TL;DR: In this paper, organic-inorganic hybrid materials have been prepared from the hydrolysis of tetraethylorthosilicate and silanol-terminated polidymetilmetoxysilane using a sol-gel process.
Abstract: The development of hybrids materials has been extensively investigated in recent years. The combination of a wide variety of compositions and production processes had permitted the use of these materials in different applications like coatings for corrosion protection of metals. In this work organic-inorganic hybrid materials have been prepared from the hydrolysis of tetraethylorthosilicate and silanol-terminated polidymetilmetoxysilane using a sol-gel process. These materials have been applied on galvanized steel and on steel electroplated with a ZnFe. In order to evaluate the degradation behavior of these coatings, electrochemical techniques (Electrochemical Impedance Spectroscopy and Potentiodynamic Polarization) were used. EIS data was fitted to an equivalent circuit from which the electrochemical parameters were obtained. Results show a good protective character of the hybrid films, when compared with uncovered specimens. The overall performance of the coating systems appears to be highly dependent on the kind of metallic coating applied to the steel.

Journal ArticleDOI
TL;DR: In this paper, the authors compared the reactivity of a south Brazilian coal, obtained from Faxinal mine, with two imported coals and the blends of the Brazilian coal with the imported ones.
Abstract: Pulverized Coal Injection (PCI) is an important standard technology replacing coke partially by pulverized coal into the blast furnace that allows a significant reduction of hot metal costs and environmental impact, contributing to a decrease of coke requirements for ironmaking. Coals typically used in this process in Brazil are, at current time, exclusively imported from many countries, although economic important coal-measures occur in the southern part of the country. The Brazilian coals have a low rank, higher contents of inert components, proportioning nocoking properties and an expected high reactivity. Due to these caractheristics, these coals could be used for injection in the blast furnaces in order to decrease the dependency on high cost imported coals. The efficiency in the combustion and the coal reactivity are considered important parameters in the blast furnace, since a larger amount of char (unburned coal) causes severe problems to the furnace operation. The aim of the present work is to compare the reactivity of a south Brazilian coal, obtained from Faxinal mine, with two imported coals and the blends of the Brazilian coal with the imported ones. The reactivity of these coals and their blends were evaluated in a thermogravimetric analyzer. In the experiments, various mass ratios of Faxinal coal and the imported coals were used to compose the blends. The gasification reaction with pure CO2 was conducted under isothermal conditions at 1050 °C and atmospheric pressure. The experimental results show the greater reactivity of the Faxinal coal. The additive behavior was confirmed. The blends with a composition of up to 50% Faxinal coal have parameters according to the usual limits used for PCI.

Journal ArticleDOI
TL;DR: The effect of non-random nuclei location and the efficiency of microstructural descriptors in assessing such a situation are studied in this article, where cellular automata simulation of recrystallization is carried out to simulate microstrutural evolution for nuclei distribution ranging from a periodic arrangement to clusters of nuclei.
Abstract: The effect of non-random nuclei location and the efficiency of microstructural descriptors in assessing such a situation are studied. Cellular automata simulation of recrystallization in two dimensions is carried out to simulate microstrutural evolution for nuclei distribution ranging from a periodic arrangement to clusters of nuclei. The simulation results are compared in detail with microstrutural descriptors normally used to follow transformation evolution. It is shown that the contiguity is particularly relevant to detect microstructural deviations from randomness. This work focuses on recrystallization but its results are applicable to any nucleation and growth transformation.

Journal ArticleDOI
TL;DR: In this article, the effects of pressure, source temperature and substrate temperature on the microstructural properties of CdTe thin films were studied and the properties were mainly influenced by the pressure, the presence of oxygen in the reaction chamber, and the substrate temperature.
Abstract: CdTe thin films are used as absorber layer in CdS/CdTe solar cells. The microstructure of this absorber layer plays a fundamental role in photovoltaic conversion and can be controlled by the deposition parameters used during the film growth. In this work, CdTe thin films were deposited by the CSS method onto glass substrates previously covered with In2O3:Sn. The effects of pressure, source temperature and substrate temperature on the microstructural properties of the films were studied. The properties were mainly influenced by the pressure, the presence of oxygen in the reaction chamber, and the substrate temperature. For films deposited under an argon atmosphere, an increase in grain size and a reduction of the texture were observed as the pressure and substrate temperature were increased. The introduction of oxygen in the atmosphere led to a decrease in the deposition rate and affected the microstructure and composition of the film. Films deposited under an argon-oxygen atmosphere have smaller grains than those deposited under argon and are richer in Te. The addition of oxygen to the atmosphere apparently did not result in the formation of oxides.

Journal ArticleDOI
TL;DR: In this paper, the authors reported some preliminary results obtained reinforcing alumina with 20.5 GPa and fracture toughness values of 5.2 MPa, which is related to the crack deflection mechanism.
Abstract: Recent studies published in the literature have focused on reinforcing alumina with different refractory carbides and nitrides in order to improve hardness, fracture toughness and wear resistance. The incorporation of hard particles as WC, (Ti,W)C and NbC on alumina matrix has shown to be a good alternative in improving the mechanical properties of the composite material. The present work reports some preliminary results obtained reinforcing alumina with 20 wt. (%) (Ti,W)C and 10 wt. (%) NbC. Alumina, (Ti,W)C and NbC powders were homogenized and mixed in a planetary ball mill and subsequently hot-pressed at 1650 °C under 20 MPa in flowing argon. Specimens were characterized by Vicker's microhardness (HV), fracture toughness (KIC), X ray diffraction and scanning microscopy. The composite material showed hardness values of 19.5 GPa and fracture toughness values » 5.2 MPa.m1/2. The high fracture toughness encountered in this work is related to the crack deflection mechanism.

Journal ArticleDOI
TL;DR: In this paper, the authors verify the hydrophobicity and adsorption properties of HMDS thin films obtained using an inductive reactor powered with a 13.56 MHz power supply.
Abstract: Hexametildisilazane (HMDS) plasma polymerized thin films obtained using low frequency power supplies can be used to make adsorbent films and turn surfaces hydrophobic. The aim of this work was to verify the hydrophobicity and adsorption properties of HMDS thin films (with and without the addition of oxygen, resulting in double or single layer films) obtained using an inductive reactor powered with a 13.56 MHz power supply. Single and double layer thin films were deposited on silicon for film characterization, polypropylene (PP) for ultraviolet (UVA/UVC) resistance tests, piezoelectric quartz crystal for adsorption tests. The double layer (intermixing) of HMDS plasma polymerized films and HMDS plasma oxidized surfaces showed a non-continuous layer. The films showed good adhesion to all substrates. Infrared analysis showed the presence of CHn, SiCH3, SiNSi and SiCH2Si within the films. Contact angle measurements with water showed hydrophobic surfaces. UVA/UVC exposure of the films resulted in the presence of cross-linking on carbonic radicals and SiCH2Si formation, which resulted in a possible protection of PP against UVA/UVC for a duration of up to two weeks. Adsorption tests showed that all organic reactants were adsorbed but not water. Plasma etching (PE) using O2 showed that even after 15 minutes of exposure the films do not change their hydrophobic characteristic but were oxidized. The results point out that HMDS films can be used: for ultraviolet protection of flexible organic substrates, such as PP, for sensor and/or preconcentrator development, due to their adsorption properties, and in spatial applications due to resistance for O2 attack in hostile conditions, such as plasma etching.