scispace - formally typeset
Search or ask a question

Showing papers in "Molecular Cytogenetics in 2011"


Journal ArticleDOI
TL;DR: An overview of recent advances in the endeavor to decipher the karyotype evolution of mammals by integrating the published results together with some of the latest unpublished results.
Abstract: The past decade has witnessed an explosion of genome sequencing and mapping in evolutionary diverse species. While full genome sequencing of mammals is rapidly progressing, the ability to assemble and align orthologous whole chromosome regions from more than a few species is still not possible. The intense focus on building of comparative maps for companion (dog and cat), laboratory (mice and rat) and agricultural (cattle, pig, and horse) animals has traditionally been used as a means to understand the underlying basis of disease-related or economically important phenotypes. However, these maps also provide an unprecedented opportunity to use multispecies analysis as a tool for inferring karyotype evolution. Comparative chromosome painting and related techniques are now considered to be the most powerful approaches in comparative genome studies. Homologies can be identified with high accuracy using molecularly defined DNA probes for fluorescence in situ hybridization (FISH) on chromosomes of different species. Chromosome painting data are now available for members of nearly all mammalian orders. In most orders, there are species with rates of chromosome evolution that can be considered as 'default' rates. The number of rearrangements that have become fixed in evolutionary history seems comparatively low, bearing in mind the 180 million years of the mammalian radiation. Comparative chromosome maps record the history of karyotype changes that have occurred during evolution. The aim of this review is to provide an overview of these recent advances in our endeavor to decipher the karyotype evolution of mammals by integrating the published results together with some of our latest unpublished results.

105 citations


Journal ArticleDOI
TL;DR: This study demonstrates the utility of using a BAC based array CGH analysis platform for detecting whole genome DNA copy number changes including specific micro deletion and duplication chromosomal disorders as first-tier test in 5080 pre and postnatal cases.
Abstract: Array comparative genomic hybridization (CGH) is currently the most powerful method for detecting chromosomal alterations in pre and postnatal clinical cases. In this study, we developed a BAC based array CGH analysis platform for detecting whole genome DNA copy number changes including specific micro deletion and duplication chromosomal disorders. Additionally, we report our experience with the clinical implementation of our array CGH analysis platform. Array CGH was performed on 5080 pre and postnatal clinical samples from patients referred with a variety of clinical phenotypes. A total of 4073 prenatal cases (4033 amniotic fluid and 40 chorionic villi specimens) and 1007 postnatal cases (407 peripheral blood and 600 cord blood) were studied with complete concordance between array CGH, karyotype and fluorescence in situ hybridization results. Among 75 positive prenatal cases with DNA copy number variations, 60 had an aneuploidy, seven had a deletion, and eight had a duplication. Among 39 positive postnatal cases samples, five had an aneuploidy, 23 had a deletion, and 11 had a duplication. This study demonstrates the utility of using our newly developed whole-genome array CGH as first-tier test in 5080 pre and postnatal cases. Array CGH has increased the ability to detect segmental deletion and duplication in patients with variable clinical features and is becoming a more powerful tool in pre and postnatal diagnostics.

76 citations


Journal ArticleDOI
Wang Yk1, Gao Cf1, Yun T1, Chen Z1, Zhang Xw1, Lv Xx1, Meng Nl1, Zhao Wz1 
TL;DR: The data indicated that ERBB2 and EGFR genetic abnormalities were associated with the prognosis of gastric cancer and may represent an important factor for the development of personalized treatment programs for gastic cancer.
Abstract: Background The goal of this study was to investigate ERBB2(HER2) and EGFR gene amplification and protein expression in gastric cancer. Fluorescence in situ hybridization (FISH) and immunohistochemistry were used to analyze ERBB2 and EGFR gene amplification and protein expression in 69 cases of gastric cancer.

50 citations


Journal ArticleDOI
TL;DR: The data indicated that an integrated cytogenomic analysis will be a better diagnostic scheme to delineate genomic contents of chromosomal and cryptic abnormalities in patients with MDS and AML.
Abstract: To evaluate the clinical validity of genome-wide oligonucleotide array comparative genomic hybridization (aCGH) for detecting somatic abnormalities, we have applied this genomic analysis to 30 cases (13 MDS and 17 AML) with clonal chromosomal abnormalities detected in more than 50% of analyzed metaphase cells. The aCGH detected all numerical chromosomal gains and losses from the mainline clones and 113 copy number alterations (CNAs) ranging from 0.257 to 102.519 megabases (Mb). Clinically significant recurrent deletions of 5q (involving the RPS14 gene), 12p12.3 (ETV6 gene), 17p13 (TP53 gene), 17q11.2 (NF1 gene) and 20q, double minutes containing the MYC gene and segmental amplification involving the MLL gene were further characterized with defined breakpoints and gene contents. Genomic features of microdeletions at 17q11.2 were confirmed by FISH using targeted BAC clones. The aCGH also defined break points in a derivative chromosome 6, der(6)t(3;6)(q21.3;p22.2), and an isodicentric X chromosome. However, chromosomally observed sideline clonal abnormalities in five cases were not detected by aCGH. Our data indicated that an integrated cytogenomic analysis will be a better diagnostic scheme to delineate genomic contents of chromosomal and cryptic abnormalities in patients with MDS and AML. An evidence-based approach to interpret somatic genomic findings was proposed.

41 citations


Journal ArticleDOI
TL;DR: The a-CGH on the synthetic mosaics proved to be able to detect as low as 8% abnormal cells in the tissue examined, and it is remarked that these ones were the smallest analyzed, and that the imbalances recurrent as clonal anomalies in cancer and leukaemia are similar in size to those revealed at 8% level.
Abstract: Background The results of cytogenetic investigations on unbalanced chromosome anomalies, both constitutional and acquired, were largely improved by comparative genomic hybridization on microarray (a-CGH), but in mosaicism the ability of a-CGH to reliably detect imbalances is not yet well established. This problem of sensitivity is even more relevant in acquired mosaicism in neoplastic diseases, where cells carrying acquired imbalances coexist with normal cells, in particular when the proportion of abnormal cells may be low. We constructed a synthetic mosaicism by mixing the DNA of three patients carrying altogether seven chromosome imbalances with normal sex-matched DNA. Dilutions were prepared mimicking 5%, 6%, 7%, 8%, 10% and 15% levels of mosaicism. Oligomer-based a-CGH (244 K whole-genome system) was applied on the patients' DNA and customized slides designed around the regions of imbalance were used for the synthetic mosaics.

40 citations


Journal ArticleDOI
TL;DR: A linked organization for the 5S rRNA and H3 histone multigene families investigated in R. brasiliensis is indicated, reinforcing previous data concerning the association of both genes in some insect groups and contributing to understanding the organization/evolution of multigenes families in the insect genomes.
Abstract: Supernumerary B chromosomes occur in addition to standard karyotype and have been described in about 15% of eukaryotes, being the repetitive DNAs the major component of these chromosomes, including in some cases the presence of multigene families. To advance in the understanding of chromosomal organization of multigene families and B chromosome structure and evolution, the distribution of rRNA and H3 histone genes were analyzed in the standard karyotype and B chromosome of three populations of the grasshopper Rhammatocerus brasiliensis. The location of major rDNA was coincident with the previous analysis for this species. On the other hand, the 5S rDNA mapped in almost all chromosomes of the standard complement (except in the pair 11) and in the B chromosome, showing a distinct result from other populations previously analyzed. Besides the spreading of 5S rDNA in the genome of R. brasiliensis it was also observed multiple sites for H3 histone genes, being located in the same chromosomal regions of 5S rDNAs, including the presence of the H3 gene in the B chromosome. Due to the intense spreading of 5S rRNA and H3 histone genes in the genome of R. brasiliensis, their chromosomal distribution was not informative in the clarification of the origin of B elements. Our results indicate a linked organization for the 5S rRNA and H3 histone multigene families investigated in R. brasiliensis, reinforcing previous data concerning the association of both genes in some insect groups. The present findings contribute to understanding the organization/evolution of multigene families in the insect genomes.

38 citations


Journal ArticleDOI
TL;DR: The crossover/chiasma frequency distribution in humans and mice with normal karyotypes as well as in carriers of structural chromosome rearrangements are those expected on the COM model.
Abstract: It is now nearly a century since it was first discovered that crossovers between homologous parental chromosomes, originating at the Prophase stage of Meiosis I, are not randomly placed. In fact, the number and distribution of crossovers are strictly regulated with crossovers/chiasmata formed in optimal positions along the length of individual chromosomes, facilitating regular chromosome segregation at the first meiotic division. In spite of much research addressing this question, the underlying mechanism(s) for the phenomenon called crossover/chiasma interference is/are still unknown; and this constitutes an outstanding biological enigma. The C hromosome O scillatory M ovement (COM) model for crossover/chiasma interference implies that, during Prophase of Meiosis I, oscillatory movements of the telomeres (attached to the nuclear membrane) and the kinetochores (within the centromeres) create waves along the length of chromosome pairs (bivalents) so that crossing-over and chiasma formation is facilitated by the proximity of parental homologs induced at the nodal regions of the waves thus created. This model adequately explains the salient features of crossover/chiasma interference, where (1) there is normally at least one crossover/chiasma per bivalent, (2) the number is correlated to bivalent length, (3) the positions are dependent on the number per bivalent, (4) interference distances are on average longer over the centromere than along chromosome arms, and (5) there are significant changes in carriers of structural chromosome rearrangements. The crossover/chiasma frequency distribution in humans and mice with normal karyotypes as well as in carriers of structural chromosome rearrangements are those expected on the COM model. Further studies are underway to analyze mechanical/mathematical aspects of this model for the origin of crossover/chiasma interference, using string replicas of the homologous chromosomes at the Prophase stage of Meiosis I. The parameters to vary in this type of experiment will include: (1) the mitotic karyotype, i.e. ranked length and centromere index of the chromosomes involved, (2) the specific bivalent/multivalent length and flexibility, dependent on the way this structure is positioned within the nucleus and the size of the respective meiocyte nuclei, (3) the frequency characteristics of the oscillatory movements at respectively the telomeres and the kinetochores.

32 citations


Journal ArticleDOI
TL;DR: The first description of a cytogenetically visible CNV/UBCA in 8q21.2 shows that banding cytogenetics is far from being outdated, and is a cost efficient, up-to-date method for a single cell specific overview on the whole genome, still prepared to deliver unexpected findings.
Abstract: Cytogenetically visible unbalanced chromosomal abnormalities (UBCA), reported for >50 euchromatic regions of almost all human autosomes, are comprised of a few megabases of DNA, and carriers are in many cases clinically healthy. It may be speculated, that some of the UBCA may be similar or identical to copy number variants (CNV) of the human genome. Here we report on a yet unreported cytogenetically visible copy number variant (CNV) in the long arm of chromosome 8, region 8q21.2, detected in three unrelated clinically healthy carriers. The first description of a cytogenetically visible CNV/UBCA in 8q21.2 shows that banding cytogenetics is far from being outdated. It is a cost efficient, up-to-date method for a single cell specific overview on the whole genome, still prepared to deliver unexpected findings.

20 citations


Journal ArticleDOI
TL;DR: A rare case of t(11;22)(q13;q11.2) in a MCL-like neoplasia is described and it is shown that this aberration leads to an overexpression of CCND1 which is regarded as a key biological feature in MCL.
Abstract: The chromosomal translocation (11;14)(q13;q32) rearranging the locus for cyclin D1 (CCND1) to that of the immunoglobulin heavy chain (IGH) can be found in virtually all cases of mantle cell lymphoma (MCL), while other CCND1 translocations are extremely rare. As CCND1 overexpression and activation is a hallmark of MCL it is regarded as a central biological mechanism in the development and maintenance of this disease. Here we present a patient initially diagnosed with chronic lymphocytic leukemia (CLL) where chromosome banding analysis revealed, among other aberrations, a translocation (11;22)(q13;q11.2). We show by fluorescence in situ hybridization (FISH) analysis that on chromosome 22 the immunoglobulin light chain lambda (IGL) is involved in this cytogenetic aberration. Additionally, we demonstrate the resulting overexpression of CCND1 on the RNA and protein level, thereby consolidating the new diagnosis of a MCL-like B-cell neoplasia. Summing up, we described a rare case of t(11;22)(q13;q11.2) in a MCL-like neoplasia and showed that this aberration leads to an overexpression of CCND1 which is regarded as a key biological feature in MCL. This case underlines the importance of cytogenetic analyses especially in atypical cases of B cell lymphomas.

18 citations


Journal ArticleDOI
TL;DR: MLPA is a valuable adjunctive tool for rapidly distinguishing between unique-sequence positive and negative sSMC, which means that the parents can already be reassured and parental karyotypes can be initiated to assess the heritability.
Abstract: Background: Small supernumerary marker chromosomes (sSMC) are extra structurally abnormal chromosomes that cannot be unambiguously identified with conventional chromosome banding techniques. These marker chromosomes may cause an abnormal phenotype or be harmless depending on different factors such as genetic content, chromosomal origin and level of mosaicism. When a sSMC is found during prenatal diagnosis, the main question is whether the sSMC contains euchromatin since in most cases this will lead to phenotypic abnormalities. We present the use of Multiplex Ligation Dependent probe Amplification (MLPA) for rapid distinction between non-euchromatic and euchromatic sSMC. Results: 29 well-defined sSMC found during prenatal diagnosis were retrospectively investigated with MLPA with the SALSA MLPA centromere kits P181 and P182 as well as with the SALSA MLPA telomere kits P036B and P070 (MRC Holland BV, Amsterdam, The Netherlands). All unique-sequence positive sSMC were correctly identified with MLPA, whereas the unique-sequence negative sSMC had normal MLPA results. Conclusions: Although different techniques exist for identification of sSMC, we show that MLPA is a valuable adjunctive tool for rapidly distinguishing between unique-sequence positive and negative sSMC. In case of positive MLPA results, genetic microarray analysis or, if not available, targeted FISH can be applied for further identification and determination of the exact breakpoints, which is important for prediction of the fetal phenotype. In case of a negative MLPA result, which means that the sSMC most probably does not contain genes, the parents can already be reassured and parental karyotyping can be initiated to assess the heritability. In the mean time, FISH techniques are needed for determination of the chromosomal origin.

17 citations


Journal ArticleDOI
TL;DR: The data indicate that RET/PTC1 oncogenic activity is not related to mitotic chromosome impairment and missegregation whereas, based on the consistent difference in types/frequencies of centrosome and spindle abnormalities observed between K1 and B-CPAP cells, the hetero/homozygous allelic status of BRAFV600E mutation seems to be not irrelevant in respect to chromosomal instability development.
Abstract: Background: Differentiated thyroid carcinoma offers a good model to investigate the possible correlation between specific gene mutations and chromosome instability. Papillary thyroid neoplasms are characterized by different mutually exclusive genetic alterations, some of which are associated with aneuploidy and aggressive phenotype. Results: We investigated the centrosome status and mitotic abnormalities in three thyroid carcinoma-derived cell lines, each maintaining the specific, biologically relevant gene alteration harbored by the parental tumors: RET/PTC1 rearrangement in TPC1; heterozygous and homozygous BRAF V600E mutation in K1 and in B-CPAP, respectively. BCPAP cells showed a statistically significant (P < 0.01) higher frequency of abnormal mitotic figures compared to TPC1 and K1 cells. Conclusions: Our data indicate that RET/PTC1 oncogenic activity is not related to mitotic chromosome impairment and missegregation whereas, based on the consistent difference in types/frequencies of centrosome and spindle abnormalities observed between K1 and B-CPAP cells, the hetero/homozygous allelic status of BRAF V600E mutation

Journal ArticleDOI
TL;DR: The results show that microarray analysis will detect known aberrations, including microscopic and cryptic alterations, and novel genomic changes will be uncovered that may become important prognostic predictors or treatment targets for CLL in the future.
Abstract: Background: Cytogenetic evaluation is a key component of the diagnosis and prognosis of chronic lymphocytic leukemia (CLL). We performed oligonucleotide-based comparative genomic hybridization microarray analysis on 34 samples with CLL and known abnormal karyotypes previously determined by cytogenetics and/or fluorescence in situ hybridization (FISH). Results: Using a custom designed microarray that targets >1800 genes involved in hematologic disease and other malignancies, we identified additional cryptic aberrations and novel findings in 59% of cases. These included gains and losses of genes associated with cell cycle regulation, apoptosis and susceptibility loci on 3p21.31, 5q35.2q35.3, 10q23.31q23.33, 11q22.3, and 22q11.23. Conclusions: Our results show that microarray analysis will detect known aberrations, including microscopic and cryptic alterations. In addition, novel genomic changes will be uncovered that may become important prognostic predictors or treatment targets for CLL in the future.

Journal ArticleDOI
TL;DR: How molecular cytogenetic techniques applied in the parents were necessary for the genetic counseling of the family is demonstrated and the importance of array-CGH analysis in cases of unexplained developmental delay is emphasized.
Abstract: Deletions of chromosome 22q11 are present in over 90% of cases of DiGeorge or Velo-Cardio-Facial syndrome (DGS/VCFS). 15q11-q13 duplication is another recognized syndrome due to rearrangements of several genes, belonging to the category of imprinted genes. The phenotype of this syndrome varies but has been clearly associated with developmental delay and autistic spectrum disorders. Co-existence of the two syndromes has not been reported so far. Here we report a 6-year-old boy presenting growth retardation, dysmorphic features and who exhibited learning difficulties. Fluorescence in situ hybridization (FISH) analysis of the proband revealed a deletion of DiGeorge Syndrome critical region (TUPLE). Array-CGH analysis revealed an interstitial duplication of 12 Mb in size in the area 15q11.2-q13.3, combined with a 3.2 Mb deletion at region 22q11.1-q11.21. FISH analysis in the mother showed a cryptic balanced translocation between chromosome 15 and chromosome 22 (not evident by classic karyotyping). The clinical manifestations could be related to both syndromes and the importance of array-CGH analysis in cases of unexplained developmental delay is emphasized. The present case further demonstrates how molecular cytogenetic techniques applied in the parents were necessary for the genetic counseling of the family.

Journal ArticleDOI
TL;DR: This is the smallest 11q22.3 deletion reported in literature, containing nine RefSeq genes, and although none of the deleted genes are obvious candidates for the features observed in the patient, genes CUL5 and SLN could play a key role in the features described.
Abstract: Background: Except for terminal deletions that lead to Jacobsen syndrome, interstitial deletions involving the long arm of chromosome 11 are not frequently reported. A clinically distinct phenotype is usually observed in these cases, and no clear genotype-phenotype correlation is proposed. Results: Here we present a case study of a 5-year-old girl with de novo submicroscopic deletion of chromosome 11q22.3 with mild mental retardation and facial dysmorphism. A standard cytogenetic analysis did not reveal any structural aberrations. In contrary, array-CGH analysis indicated a small deletion of 11q22.3. Discussion: To our knowledge, this is the smallest 11q22.3 deletion reported in literature, containing nine RefSeq genes. Although none of the deleted genes are obvious candidates for the features observed in our patient, genes CUL5 and SLN could play a key role in the features described.

Journal ArticleDOI
TL;DR: The authors' results illustrate the successful evaluation of CLL using a microarray optimized for the interrogation of inherited disorders and the identification of alterations with possible relevance to CLL susceptibility.
Abstract: Background: Chronic lymphocytic leukemia (CLL) is a highly variable disease with life expectancies ranging from months to decades. Cytogenetic findings play an integral role in defining the prognostic significance and treatment for individual patients. Results: We have evaluated 25 clinical cases from a tertiary cancer center that have an established diagnosis of CLL and for which there was prior cytogenetic and/or fluorescence in situ hybridization (FISH) data. We performed microarray-based comparative genomic hybridization (aCGH) using a bacterial artificial chromosome (BAC)-based microarray designed for the detection of known constitutional genetic syndromes. In 15 of the 25 cases, aCGH detected all copy number imbalances identified by prior cytogenetic and/or FISH studies. For the majority of those not detected, the aberrations were present at low levels of mosaicism. Furthermore, for 15 of the 25 cases, additional abnormalities were detected. Four of those cases had deletions that mapped to intervals implicated in inherited predisposition to CLL. For most cases, aCGH was able to detect abnormalities present in as few as 10% of cells. Although changes in ploidy are not easily discernable by aCGH, results for two cases illustrate the detection of additional copy gains and losses present within a mosaic tetraploid cell population. Conclusions: Our results illustrate the successful evaluation of CLL using a microarray optimized for the interrogation of inherited disorders and the identification of alterations with possible relevance to CLL susceptibility.

Journal ArticleDOI
TL;DR: This study localizes rearrangements within duplicon-enriched regions of Angelman/Prader-Willi (AS/PWS) syndrome chromosomal deletions with fluorescence in situ hybridization (FISH) to define the boundaries of chromosome rearrangement for other genomic disorders associated with SDs.
Abstract: Background Segmental duplicons (SDs) predispose to an increased frequency of chromosomal rearrangements These rearrangements can cause a diverse range of phenotypes due to haploinsufficiency, in cis positional effects or gene interruption Genomic microarray analysis has revealed gene dosage changes adjacent to duplicons, but the high degree of similarity between duplicon sequences has confounded unequivocal assignment of chromosome breakpoints within these intervals In this study, we localize rearrangements within duplicon-enriched regions of Angelman/Prader-Willi (AS/PWS) syndrome chromosomal deletions with fluorescence in situ hybridization (FISH)

Journal ArticleDOI
TL;DR: Wide variations of sex chromosome aberrations have been detected using the combination of conventional cytogenetic and FISH, including detection of low level of mosaicism and Y-chromosome fragments.
Abstract: Monosomy × or 45,X is a cytogenetic characteristic for Turner syndrome. This chromosome anomaly is encountered in around 50% of cases, but wide variations of other anomalies have been found. This report is to describe the cytogenetic characteristics of 45,X individuals. To the best of our knowledge, there were no large series of 45,X cases has been reported from Indonesia. Ninety five cases with 45,X cell line found, of which 60 were detected by karyotyping, 4 by FISH for sex chromosomes, and 31 by both karyotyping and FISH. Using karyotyping 37 out of 91 cases(40.6%) were identified as 45,X individuals, while cases who underwent FISH only 4 out of 35 cases (11.4%) showed 45,X result, resulting in total of 39 45,X cases (41.1%), and the rest 56 (58.9%) cases are mosaic. Among these cases, 21 out of 95 (22.1%) have Y or part of Y as the second or third sex chromosome in their additional cell lines. Result discrepancies revealed in 22 out of 31 cases who underwent both FISH and karyotyping, of which 7 showed normal 46,XX or 46,XY karyotypes, but by FISH, additional monosomy × cell line was found. Most of the cases were referred at the age of puberty (8-13 years old) or after that (14-18 years old), 31 and 21 cases respectively, and there were 14 cases were sent in adulthood. Wide variations of sex chromosome aberrations have been detected using the combination of conventional cytogenetic and FISH, including detection of low level of mosaicism and Y-chromosome fragments. Result discrepancies using both techniques were found in 22/31 cases, and in order to obtain a more details of sex chromosome constitution of individuals with 45,X cell line both FISH and karyotyping should be carried out simultaneously.

Journal ArticleDOI
TL;DR: The clinical features of isolated partial trisomy 7q21.2 to 7q31.31 without overlapping phenotypic effects of partial monosomy in an 8 years old girl shows that FISH-microdissection is of great benefit for precise breakpoint designation in balanced rearrangements.
Abstract: Background Genotype-phenotype correlations for chromosomal imbalances are often limited by overlapping effects of partial trisomy and monosomy resulting from unbalanced translocations and by poor resolution of banding analysis for breakpoint designation. Here we report the clinical features of isolated partial trisomy 7q21.2 to 7q31.31 without overlapping phenotypic effects of partial monosomy in an 8 years old girl. The breakpoints of the unbalanced rearranged chromosome 7 could be defined precisely by array-CGH and a further imbalance could be excluded. The breakpoints of the balanced rearranged chromosomes 9 and 10 were identified by microdissection of fluorescence labelled derivative chromosomes 9 and 10.

Journal ArticleDOI
TL;DR: In association with other phenotypic features, agenesis of corpus callosum appears to be a landmark phenotype for Deletion 1q44 syndrome, the critical genes lying proximal to SMYD3 in 1q 44 region.
Abstract: Background: Partial Trisomy 11q syndrome (or Duplication 11q) has defined clinical features and is documented as a rare syndrome by National Organization of Rare Disorders (NORD). Deletion 1q44 (or Monosomy 1q44) is a well-defined syndrome, but there is controversy about the genes lying in 1q44 region, responsible for agenesis of the corpus callosum. We report a female child with the rare Partial Trisomy 11q syndrome and Deletion 1q44 syndrome. The genomic imbalance in the proband was used for molecular characterization of the critical genes in 1q44 region for agenesis of corpus callosum. Some genes in 11q14q25 may be responsible for laryngomalacia. Results: We report a female child with dysmorphic features, microcephaly, growth retardation, seizures, acyanotic heart disease, and hand and foot deformities. She had agenesis of corpus callosum, laryngomalacia, anterior ectopic anus, esophageal reflux and respiratory distress. Chromosome analysis revealed a derivative chromosome 1. Her karyotype was 46,XX,der(1)t(1;11)(q44;q14)pat. The mother had a normal karyotype and the karyotype of the father was 46,XY,t(1;11)(q44;q14). SNP array analysis showed that the proband had a 54 Mb duplication of 11q14q25 and a 0.9 Mb deletion of the submicroscopic subtelomeric 1q44 region. Fluorescence Insitu Hybridisation confirmed the duplication of 11qter and deletion of 1qter. Conclusion: Laryngomalacia or obstruction of the upper airway is the outcome of increased dosage of some genes due to Partial Trisomy 11q Syndrome. In association with other phenotypic features, agenesis of corpus callosum appears to be a landmark phenotype for Deletion 1q44 syndrome, the critical genes lying proximal to SMYD3 in 1q44 region.

Journal ArticleDOI
TL;DR: This work re-confirms that any child with unexplained developmental delay and systemic involvement should be studied by aCGH techniques and the FISH technique would still be useful to further delineate the research work and identify such rare mosaicism.
Abstract: Background Genomic imbalances of the 12q telomere are rare; only a few patients having 12q24.31-q24.33 deletions were reported. Interestingly none of these were mosaic. Although some attempts have been made to establish phenotype/genotype interaction for the deletions in this region, no clear relationship has been established to date.

Journal ArticleDOI
TL;DR: This is the 19th reported case of complete ring chromosome 7 mosaicism and the first survived case with mosaic supernumerary ring 7 without a normal karyotype detected in the peripheral lymphocytes.
Abstract: Aim: Clinical and molecular cytogenetic investigations of a newborn girl exhibiting facial dysmorphism with developmental delay. Methods: Phenotypic evaluation was first applied to examine the proband’s developmental status. Computed tomography and colour transcranial Doppler were used then to investigate her brain structure and function. Subsequently, chromosomal abnormalities were examined by karyotyping and fluorescent in situ hybridization was performed to investigate size of fragments lost at the two distal ends of the ring chromosome 7. In addition, multicolour banding was applied to rule out structural rearrangement occurs in between the ring chromosome 7. Results: The proband was born with mosaic supernumerary ring chromosome 7, without a normal karyotype detected in the peripheral blood lymphocytes. The distal arm of chromosome 7p (at least 255 kb from the telomere) was part of an extra ring chromosome 7. In addition, the distal arm of 7q, at least 8 kb from the telomere, was missing. There was no other chromosomal rearrangement detected by multicolour banding. Interpretation: This is the 19 th reported case of complete ring chromosome 7 mosaicism and the first survived case with mosaic supernumerary ring 7 without a normal karyotype detected in the peripheral lymphocytes.

Journal ArticleDOI
TL;DR: A new childhood T-acute lymphoblastic leukemia case of near-tetraploid karyotype with loss of two p53-gene copies is presented, characterized in detail by cytogenetic and molecular studies and it is suggested that p53 is a good target gene to be screened.
Abstract: Background Near-tetraploid (model #81-103) and near-triploid (model #67-81) karyotypes are found in around 1% of childhood acute lymphoblastic leukemia. Due to its rarity, these two cytogenetic subgroups are generally included in the hyperdiploid group (model # > 51). Therefore separate informations about these two subgroups are limited to a few reports. Some studies found that near-tetraploidy is relatively more frequent in higher median ages and it is associated to Frech-American-British Classification subtype L2. Although the mechanisms by which leukemic blast cells divide is still unclear, studies have suggested that hyperdiploidy, near-triploidy and near-tetraploidy do not seem to share the same mechanism.

Journal ArticleDOI
TL;DR: The results strongly suggest that the PATRR adopts unstable cruciform structures during spermatogenesis that act as translocation hotspots in humans.
Abstract: Cumulative evidence suggests that DNA secondary structures impact DNA replication, transcription and genomic rearrangements. One of the best studied examples is the recurrent constitutional t(11;22) in humans that is mediated by potentially cruciform-forming sequences at the breakpoints, palindromic AT-rich repeats (PATRRs). We previously demonstrated that polymorphisms of PATRR sequences affect the frequency of de novo t(11;22)s in sperm samples from normal healthy males. These studies were designed to determine whether PATRR polymorphisms affect DNA secondary structure, thus leading to variation in translocation frequency. We studied the potential for DNA cruciform formation for several PATRR11 polymorphic alleles using mobility shift analysis in gel electrophoresis as well as by direct visualization of the DNA by atomic force microscopy. The structural data for various alleles were compared with the frequency of de novo t(11;22)s the allele produced. The data indicate that the propensity for DNA cruciform structure of each polymorphic allele correlates with the frequency of de novo t(11;22)s produced (r = 0.77, P = 0.01). Although indirect, our results strongly suggest that the PATRR adopts unstable cruciform structures during spermatogenesis that act as translocation hotspots in humans.


Journal ArticleDOI
TL;DR: It is suggested that a CNV at 18p11.32 (528,050-2,337,486) may represent a new benign euchromatic variant.
Abstract: Background Recent development of MLPA (Multiplex-Ligation-dependent Probe Amplification, MRC-Holland) and microarray technology allows detection of a wide range of new submicroscopic abnormalities Publishing new cases and case reviews associated with both clinical abnormalities and a normal phenotype is of great value

Journal ArticleDOI
TL;DR: Frohnauer et al.'s data are consistent with previously reported frequencies of 7q11.23 inversion in North America and Spain in both transmitting parents and the general population.
Abstract: Inversion of the Williams syndrome (WS) region on chromosome 7q11.23 has previously been shown to occur at a higher frequency in the transmitting parents of children with WS than in the general population, suggesting that it predisposes to the WS deletion. Frohnauer et al. recently reported that the frequency of this inversion is not elevated in the parents of children with WS in Germany relative to the German general population. We have compared Frohnauer et al.'s data to those from three previously published studies (Hobart et al., Bayes et al., Osborne et al.), all of which reported a significantly higher rate of 7q11.23 inversion in transmitting parents than in the general population. Results indicated that Frohnauer et al.'s data are consistent with previously reported frequencies of 7q11.23 inversion in North America and Spain in both transmitting parents and the general population.

Journal ArticleDOI
TL;DR: Application of subtelomeric FISH technique revealed the presence of interstitial telomeres and led to the ascertainment of partial trisomy for the distal 7p segment localized on the telomeric end of the short arm of chromosome 19.
Abstract: Chromosome rearrangements involving telomeres have been established as one of the major causes of idiopathic mental retardation/developmental delay. This case of 7p partial trisomy syndrome in a 3-year-old female child presenting with developmental delay emphasizes the clinical relevance of cytogenetic diagnosis in the better management of genetic disorders. Application of subtelomeric FISH technique revealed the presence of interstitial telomeres and led to the ascertainment of partial trisomy for the distal 7p segment localized on the telomeric end of the short arm of chromosome 19. Whole-genome cytogenetic microarray-based analysis showed a mosaic 3.5 Mb gain at Xq21.1 besides the approximately 24.5 Mb gain corresponding to 7p15.3- > pter. The possible mechanisms of origin of the chromosomal rearrangement and the clinical relevance of trisomy for the genes lying in the critical regions are discussed.

Journal ArticleDOI
TL;DR: A novel and cytogenetically rare case of a biclonal MDS with complex chromosomal aberrations and deletion of RB1-gene in both clones is reported, associated with a poor prognosis as the patient died 3 months after diagnosis.
Abstract: Myelodysplastic syndrome (MDS) represents a group of clonal hematological disorders characterized by progressive cytopenia, and reflects to defects in erythroid, myeloid and megakaryocytic maturation. MDS is more frequently observed in older aged patients with cytogenetic abnormalities like monosomy of chromosome(s) 5 and/or 7. In 50% of de novo MDS cases, chromosomal aberrations are found and rearrangements involving the retinoblastoma (RB1) gene in 13q14 are found. Here, we are presenting a case report of a rare biclonal MDS with a karyotype of 45, XY,-4, der(6)t(4;6)(p15.1;p21.3), der(8)t(4;8)(q31.2;q22), t(13;16)(q21.3;p11.2)[11]/45, XY, der(7)t(7;13)(p22.2~22.3;q21.3),-13 [9]. The patient was diagnosed according to WHO classification as refractory anemia with excess of blasts (RAEB-II). Immunophenotyping was positive for CD11b, CD11c, CD10, CD13, CD15, CD16 and CD33. We report, a novel and cytogenetically rare case of a biclonal MDS with complex chromosomal aberrations and deletion of RB1-gene in both clones. These findings are associated with a poor prognosis as the patient died 3 months after diagnosis.