scispace - formally typeset
Search or ask a question

Showing papers in "Molecular Microbiology in 2000"


Journal ArticleDOI
TL;DR: The outer membrane protects Gram‐negative bacteria against a harsh environment and the embedded proteins fulfil a number of tasks that are crucial to the bacterial cell, such as solute and protein translocation, as well as signal transduction.
Abstract: The outer membrane protects Gram-negative bacteria against a harsh environment. At the same time, the embedded proteins fulfil a number of tasks that are crucial to the bacterial cell, such as solute and protein translocation, as well as signal transduction. Unlike membrane proteins from all other sources, integral outer membrane proteins do not consist of transmembrane alpha-helices, but instead fold into antiparallel beta-barrels. Over recent years, the atomic structures of several outer membrane proteins, belonging to six families, have been determined. They include the OmpA membrane domain, the OmpX protein, phospholipase A, general porins (OmpF, PhoE), substrate-specific porins (LamB, ScrY) and the TonB-dependent iron siderophore transporters FhuA and FepA. These crystallographic studies have yielded invaluable insight into and decisively advanced the understanding of the functions of these intriguing proteins. Our review is aimed at discussing their common principles and peculiarities as well as open questions associated with them.

1,109 citations


Journal ArticleDOI
TL;DR: The SRSRs are widespread among the various physiological and phylogenetic groups, probably being present in all the Archaea and hyperthermophilic Bacteria, in at least some members of the cyanobacteria and proteobacteria lineages, as well as in the two subgroups of Gram-positive bacteria (the low and high GC content groups).
Abstract: Sir, A peculiar type of repeated element has been detected in different prokaryotes and the occurrence of similar elements in very distant phylogenetic groups is being reported subsequent to genomic sequencing. A comparative study of these peculiar elements, aimed at determining the common structural and sequence features, as well as their phylogenetic distribution, will contribute to elucidate their biological relevance. These sequences share multiple features which are unique as a whole, being easily distinguishable from any other recurrent motif, and arising as a new family of prokaryotic repeats. They are repeated short elements generally occurring in clusters, but their main peculiarity is the layout: they are always regularly spaced by unique intervening sequences of constant length. For the sake of clarity, and ensuing from the mentioned characteristics, we will refer to the members of this family of repeats as Short Regularly Spaced Repeats (SRSRs). Using a specific computer program, we have performed a SRSRs search in the completed microbial genomes and the available partial genome sequences of those close to completion. The organisms in which SRSRs have currently been found are listed in Table 1. In summary, the SRSRs are widespread among the various physiological and phylogenetic groups, probably being present in all the Archaea and hyperthermophilic Bacteria, in at least some members of the cyanobacteria and proteobacteria lineages, as well as in the two subgroups of Gram-positive bacteria (the low and high GC content groups). They thus represent the most widely distributed family of repeats among prokaryotic genomes. The main features of the SRSRs are summarized in Table 1. They are typically short partially palindromic sequences of 24±40 bp, containing inner and terminal inverted repeats of up to 11 bp (see Fig. 1). Although isolated elements have been detected, the SRSR elements are generally arranged in clusters (up to 14 per genome) of repeated units spaced by unique intervening 20±58 bp sequences. The extent of the clusters is particularly noteworthy in the Archaea. The SRSRs are very homogeneous within a genome, most of them being identical. However, there are examples of heterogeneity, specially in Archaea. Various SRSR sequences with less than 85% similarity can be distinguished in Pyrococcus abyssi, Archaeoglobus fulgidus, Aeropyrum pernix and Methanococcus jannaschii. In the latter, two clusters with 25 and five units of the same element were initially reported (Bult et al., 1996, Science 273: 1058±1073). We have found 12 additional loci and three different SRSR elements, with more than 5 bp changes. The sequence is conserved in members of the same phylogenetic group, and there is a high percentage of similarity even among domains (see Fig. 1), indicative of a common origin. Phylogenetic distance and the degree of sequence conservation closely concur. Haloferax volcanii differs from Haloferax mediterranei in 3 out of 30 bp, and Pyrococcus horikoshii differs from Pyrococcus abysii in 2 out of 29 bp. The high degree of homology between Escherichia coli and Salmonella typhi is remarkable, with one difference out of 29 bp. The terminal and inner-inverted repeats of each element are the most conserved regions of the SRSRs (Fig. 1), suggesting that they must be playing an essential role. In M. jannaschii, Methanobacterium thermoautotrophicum, A. fulgidus, Thermotoga maritima, A. pernix and Mycobacterium tuberculosis, some SRSR clusters are followed by larger (. 300 bp) repeated elements. This association is not detectable in other microorganisms, nor is its possible relevance known. A general location pattern of the SRSRs loci is not recognizable. There is, however, a remarkable coincidence. Possible chromosomal origins of replication have recently been proposed for the Archaea M. thermoautotrophicum and P. horikoshii (Lopez et al. 1999, Mol Microbiol 32: 883±886). In both cases, two clusters of SRSRs are located one to each side of the proposed origin of replication. The distance to the origin is similar, and relatively short, for both clusters (200 and 270 kb in M. thermoautotrophicum, 40 and 78 kb in P. horikoshii). The early and simultaneous appearance of the SRSR clusters in the nascent molecules can be interpreted as being indicative of their relevance. Besides the sequence conservation, other remarkable features of this family of tandem repeats are the palindromic nature and regular spacing of the SRSR elements. The size of the repeated unit and the presence

697 citations


Journal ArticleDOI
TL;DR: Evidence is provided that Salmonella typhimurium kills phagocytes by an unusual proinflammatory mechanism of necrosis that is distinguishable from apoptosis, and inhibition of the interleukin‐1‐converting enzyme caspase‐1 blocked the death of infected macrophages, but not control cells induced to undergo apoptosis or necrosis.
Abstract: We provide evidence that Salmonella typhimurium kills phagocytes by an unusual proinflammatory mechanism of necrosis that is distinguishable from apoptosis. Infection stimulated a distinctly diffuse pattern of DNA fragmentation in macrophages, which contrasted with the marked nuclear condensation displayed by control cells undergoing chemically induced apoptosis. In apoptotic cells, DNA fragmentation and nuclear condensation result from caspase-3-mediated proteolysis; caspases also subvert necrotic cell death by cleaving and inactivating poly ADP-ribose polymerase (PARP). Caspase-3 was not activated during Salmonella infection, and PARP remained in its active, uncleaved state. Another hallmark of apoptosis is sustained membrane integrity during cell death; yet, infected macrophages rapidly lost membrane integrity, as indicated by simultaneous exposure of phosphatidylserine with the uptake of vital dye and the release of the cytoplasmic enzyme lactate dehydrogenase. During experimentally induced necrosis, lethal ion fluxes through the plasma membrane can be prevented by exogenous glycine; similarly, glycine completely blocked Salmonella-induced cytotoxicity. Finally, inhibition of the interleukin (IL)-1-converting enzyme caspase-1 blocked the death of infected macrophages, but not control cells induced to undergo apoptosis or necrosis. Thus, Salmonella-infected macrophages are killed by an unusual caspase-1-dependent mechanism of necrosis.

577 citations


Journal ArticleDOI
TL;DR: Recent progress on the characterization of the Tat system is reviewed and the structure and operation of this major new bacterial protein export pathway is critically discussed.
Abstract: The Tat (twin-arginine translocation) system is a bacterial protein export pathway with the remarkable ability to transport folded proteins across the cytoplasmic membrane. Preproteins are directed to the Tat pathway by signal peptides that bear a characteristic sequence motif, which includes consecutive arginine residues. Here, we review recent progress on the characterization of the Tat system and critically discuss the structure and operation of this major new bacterial protein export pathway.

564 citations


Journal ArticleDOI
TL;DR: A cytotoxin (CytK) has been isolated from a Bacillus cereus strain that caused a severe food poisoning outbreak killing three people and may be responsible for a disease that is similar to, although not as severe as, the necrotic enteritis caused by the β‐toxin of C. perfringens type C.
Abstract: A cytotoxin (CytK) has been isolated from a Bacillus cereus strain that caused a severe food poisoning outbreak killing three people. A protein of 34 kDa was highly cytotoxic, and the addition of other secreted proteins gave no synergistic effect. CytK was also necrotic and haemolytic. No known B. cereus enterotoxins were produced by this strain. A DNA sequence from 1.8 kb upstream to 0.2 kb downstream of the toxin gene was sequenced. The deduced amino acid sequence of the toxin showed similarity to Staphylococcus aureus leucocidins, γ-haemolysin and α-haemolysin, Clostridium perfringensβ-toxin and B. cereus haemolysin II, all belonging to a family of β-barrel channel-forming toxins. There was no sequence similarity between CytK and enterotoxins of B. cereus. The upstream sequence contained a partial sequence of a putative histidine kinase gene. A recognition site for PlcR, which regulates the transcription of enterotoxins HBL and Nhe of B. cereus, was found in the promoter region of the toxin. This new cytotoxin may be responsible for a disease that is similar to, although not as severe as, the necrotic enteritis caused by the β-toxin of C. perfringens type C.

549 citations


Journal ArticleDOI
TL;DR: This review focuses on the structural features and the mechanism of major efflux pumps of Gram‐negative bacteria, which expel from the cells a remarkably broad range of antimicrobial compounds and produce the characteristic intrinsic resistance of these bacteria to antibiotics, detergents, dyes and organic solvents.
Abstract: A set of multidrug efflux systems enables Gram-negative bacteria to survive in a hostile environment. This review focuses on the structural features and the mechanism of major efflux pumps of Gram-negative bacteria, which expel from the cells a remarkably broad range of antimicrobial compounds and produce the characteristic intrinsic resistance of these bacteria to antibiotics, detergents, dyes and organic solvents. Each efflux pump consists of three components: the inner membrane transporter, the outer membrane channel and the periplasmic lipoprotein. Similar to the multidrug transporters from eukaryotic cells and Gram-positive bacteria, the inner membrane transporters from Gram-negative bacteria recognize and expel their substrates often from within the phospholipid bilayer. This efflux occurs without drug accumulation in the periplasm, implying that substrates are pumped out across the two membranes directly into the medium. Recent data suggest that the molecular mechanism of the drug extrusion across a two-membrane envelope of Gram-negative bacteria may involve the formation of the membrane adhesion sites between the inner and the outer membranes. The periplasmic components of these pumps are proposed to cause a close membrane apposition as the complexes are assembled for the transport.

464 citations


Journal ArticleDOI
TL;DR: It was concluded that agfD regulates at least two independent pathways contributing to the multicellular morphotype in S. typhimurium.
Abstract: The regulatory programme of multicellular behaviour in Salmonella typhimurium is determined by mutations in the agfD promoter. AgfD has already been identified to regulate the extracellular matrix associated with the multicellular morphotype composed of thin aggregative fimbriae (agf). To detect additional components contributing to the multicellular morphotype in S. typhimurium, we constructed a mutant in agfD, the positive transcriptional regulator of the agfBA(C) operon encoding for fimbrial subunit proteins. The agfD mutant lacked any form of multicellular behaviour as shown by analysis at the macroscopic and microscopic level. In contrast, the agfBA mutant unable to form thin aggregative fimbriae still maintained long-range intercellular adhesion. Promoter and expression analysis revealed that the genes downstream of agfD agfEFG most likely did not contribute to the remaining aggregative behaviour. Screening of transcriptional fusions for agfD dependency uncovered adrA, a homologue of yaiC in Escherichia coli. Environmental factors regulating adrA correspond to the regulation of thin aggregative fimbriae. AdrA is a putative transmembrane protein with a C-terminal GGDEF domain of unknown function although it is present in over 50 bacterial proteins. AdrA mutant cells, which still formed thin aggregative fimbriae with all binding characteristics, exhibited community behaviour but, unlike the wild type, lacked long-range intercellular adhesion. An agfBA adrA double mutant behaved like the agfD mutant. Therefore, it was concluded that agfD regulates at least two independent pathways contributing to the multicellular morphotype in S. typhimurium.

424 citations


Journal ArticleDOI
TL;DR: This review summarizes approaches leading to the identification of SPI2, the molecular genetics and evolution of SPI2, and the current understanding of the regulation of gene expression for intracellular Salmonella pathogenesis.
Abstract: Systemic infections by Salmonella enterica, such as typhoid fever, are a significant threat to human health. Recent studies indicate that the function of a type III secretion system encoded by Salmonella Pathogenicity Island 2 (SPI2) is central for the ability of S. enterica to cause systemic infections and for intracellular pathogenesis. This review summarizes approaches leading to the identification of SPI2, the molecular genetics and evolution of SPI2, and the current understanding of the regulation of gene expression. Recent studies have indicated that SPI2 is used by intracellular Salmonella to actively modify functions of the host cells. The role of SPI2 during pathogenesis of salmonellosis and current models regarding function will be discussed.

390 citations


Journal ArticleDOI
TL;DR: Analysis of the G+C content and the relative positions of genes and open reading frames carried by the plasmid, together with information concerning the localization and function of encoded proteins, suggests that pWR100 contains blocks of genes of various origins, some of which were initially carried by four different plasmids.
Abstract: Bacteria of Shigella spp. are the causative agents of shigellosis. The virulence traits of these pathogens include their ability to enter into epithelial cells and induce apoptosis in macrophages. Expression of these functions requires the Mxi-Spa type III secretion apparatus and the secreted IpaA-D proteins, all of which are encoded by a virulence plasmid. In wild-type strains, the activity of the secretion apparatus is tightly regulated and induced upon contact of bacteria with epithelial cells. To investigate the repertoire of proteins secreted by Shigella flexneri in conditions of active secretion, we determined the N-terminal sequence of 14 proteins that are secreted by a mutant in which secretion was deregulated. Sequencing of the virulence plasmid pWR100 of the S. flexneri strain M90T (serotype 5) has allowed us to identify the genes encoding these secreted proteins and suggests that approximately 25 proteins are secreted by the type III secretion apparatus. Analysis of the G+C content and the relative positions of genes and open reading frames carried by the plasmid, together with information concerning the localization and function of encoded proteins, suggests that pWR100 contains blocks of genes of various origins, some of which were initially carried by four different plasmids.

383 citations


Journal ArticleDOI
TL;DR: It is suggested that microbial globins have additional functions unrelated to ‘NO’ stresses, as well as the essential chemistry of NO and related reactive species and their interactions with globins.
Abstract: Globin-like oxygen-binding proteins occur in bacteria, yeasts and other fungi, and protozoa. The simplest contain protohaem as sole prosthetic group, but show considerable variation in their similarity to the classical animal globins and plant globins. Flavohaemoglobins comprise a haem domain homologous to classical globins and a ferredoxin-NADP+ reductase (FNR)-like domain that converts the globin into an NAD(P)H-oxidizing protein with diverse reductase activities. In Escherichia coli, the prototype flavohaemoglobin (Hmp) is clearly involved in responses to nitric oxide (NO) and nitrosative stress: (i) the structural gene hmp is upregulated by NO and nitrosating agents; (ii) purified Hmp binds NO avidly, but also converts it to nitrate (aerobically) or nitrous oxide (anaerobically); (iii) hmp mutants are hypersensitive to NO and nitrosative stresses. Here, we review recent advances in E. coli and the growing number of microbes in which globins are known, draw particular attention to the essential chemistry of NO and related reactive species and their interactions with globins, and suggest that microbial globins have additional functions unrelated to 'NO' stresses.

370 citations


Journal ArticleDOI
TL;DR: In vivo studies of the activity of fourKinA, KinC, KinD and KinE revealed that KinC and KinD were responsible for Spo0A∼P production during the exponential phase of growth in the absence of KinA and KinB.
Abstract: Protein homology studies identified five kinases potentially capable of phosphorylating the Spo0F response regulator and initiating sporulation in Bacillus subtilis. Two of these kinases, KinA and KinB, were known from previous studies to be responsible for sporulation in laboratory media. In vivo studies of the activity of four of the kinases, KinA, KinC, KinD (ykvD) and KinE (ykrQ), using abrB transcription as an indicator of Spo0A approximately P level, revealed that KinC and KinD were responsible for Spo0A approximately P production during the exponential phase of growth in the absence of KinA and KinB. In vitro, all four kinases dephosphorylated Spo0F approximately P with the production of ATP at approximately the same rate, indicating that they possess approximately equal affinity for Spo0F. All the kinases were expressed during growth and early stationary phase, suggesting that the differential activity observed in growth and sporulation results from differential activation by signal ligands unique to each kinase.

Journal ArticleDOI
TL;DR: It is reported that Ag43 contributes to E. coli biofilm formation in glucose‐minimal medium, but not in Luria–Bertani broth, and it is shown that flagellar‐mediated motility is required for biofilm Formation in both rich and minimal environments.
Abstract: Transcription of the agn43 locus, which specifies an outer membrane protein of Escherichia coli, is regulated in a phase-variable fashion by the OxyR-DNA binding protein and Dam methylase. Despite its well-characterized regulation, the function of Ag43 has remained elusive until now. Previous studies indicated that Ag43 mediates autoaggregation of certain strains of E. coli in liquid culture. Given this phenotype, we examined the role of Ag43 in biofilm formation. Here, we report that Ag43 contributes to E. coli biofilm formation in glucose-minimal medium, but not in Luria-Bertani broth. In addition, we show that flagellar-mediated motility is required for biofilm formation in both rich and minimal environments. Altogether, our results suggest that E. coli uses both common and specific gene sets for the development of biofilms under various growth conditions.

Journal ArticleDOI
TL;DR: The results clearly demonstrated that the R‐type pyocin is derived from a common ancestral origin with P2 phage and the F‐type from λ phage, and supported by identification of a lysis gene cassette similar to those for bacteriophages.
Abstract: Pseudomonas aeruginosa produces three types of bacteriocins: R-, F- and S-type pyocins. The S-type pyocin is a colicin-like protein, whereas the R-type pyocin resembles a contractile but non-flexible tail structure of bacteriophage, and the F-type a flexible but non-contractile one. As genetically related phages exist for each type, these pyocins have been thought to be variations of defective phage. In the present study, the nucleotide sequence of R2 pyocin genes, along with those for F2 pyocin, which are located downstream of the R2 gene cluster on the chromosome of P. aeruginosa PAO1, was analysed in order to elucidate the relationship between the pyocins and bacteriophages. The results clearly demonstrated that the R-type pyocin is derived from a common ancestral origin with P2 phage and the F-type from lambda phage. This notion was supported by identification of a lysis gene cassette similar to those for bacteriophages. The gene organization of the R2 and F2 pyocin gene cluster, however, suggested that both pyocins are not simple defective phages, but are phage tails that have been evolutionarily specialized as bacteriocins. A systematic polymerase chain reaction (PCR) analysis of P. aeruginosa strains that produce various subtypes of R and F pyocins revealed that the genes for every subtype are located between trpE and trpG in the same or very similar gene organization as for R2 and F2 pyocins, but with alterations in genes that determine the receptor specificity.

Journal ArticleDOI
TL;DR: It is shown that PcAMA1 expression in P. falciparum provides trans‐species complementation to at least 35% of the function of endogenous PfAMA1 in human red cells, which indicates an important role for AMA1 in the invasion of red blood cells (RBCs) across divergent Plasmodium species.
Abstract: Apical membrane antigen 1 (AMA1) is an asexual blood-stage protein expressed in the invasive merozoite form of Plasmodia species, which are the causative agent of malaria. We have complemented the function of Plasmodium falciparum AMA1 (PfAMA1) with a divergent AMA1 transgene from Plasmodium chabaudi (PcAMA1). It was not possible to disrupt the PfAMA1 gene using 'knock-out' plasmids, although we demonstrate that the PfAMA1 gene can be targeted by homologous recombination. These experiments suggest that PfAMA1 is critical, perhaps essential, for blood-stage growth. Importantly, we showed that PcAMA1 expression in P. falciparum provides trans-species complementation to at least 35% of the function of endogenous PfAMA1 in human red cells. Furthermore, expression of this transgene in P. falciparum leads to more efficient invasion of murine erythrocytes. These results indicate an important role for AMA1 in the invasion of red blood cells (RBCs) across divergent Plasmodium species.

Journal ArticleDOI
TL;DR: It is demonstrated that LuxO functions as an activator protein via interaction with the alternative sigma factor, σ54 (encoded by rpoN), and that phenotypes other than lux are regulated by LuxO and ρ54, demonstrating that in Vibrio harveyi, quorum sensing controls multiple processes.
Abstract: The bioluminescent marine bacterium Vibrio harveyi controls light production (lux) by an elaborate quorum-sensing circuit. V. harveyi produces and responds to two different autoinducer signals (AI-1 and AI-2) to modulate the luciferase structural operon (luxCDABEGH) in response to changes in cell-population density. Unlike all other Gram-negative quorum-sensing organisms, V. harveyi regulates quorum sensing using a two-component phosphorylation-dephosphorylation cascade. Each autoinducer is recognized by a cognate hybrid sensor kinase (called LuxN and LuxQ). Both sensors transduce information to a shared phosphorelay protein called LuxU, which in turn conveys the signal to the response regulator protein LuxO. Phospho-LuxO is responsible for repression of luxCDABEGH expression at low cell density. In the present study, we demonstrate that LuxO functions as an activator protein via interaction with the alternative sigma factor, sigma54 (encoded by rpoN). Our results suggest that LuxO, together with sigma54, activates the expression of a negative regulator of luminescence. We also show that phenotypes other than lux are regulated by LuxO and sigma54, demonstrating that in Vibrio harveyi, quorum sensing controls multiple processes.

Journal ArticleDOI
TL;DR: The cytoplasmic proteins CheY, CheZ and CheA tended to cluster at the cell poles in a manner similar to that observed earlier for methyl‐ accepting chemotaxis proteins (MCPs), but only if MCPs were present.
Abstract: We prepared fusions of yellow fluorescent protein [the YFP variant of green fluorescent protein (GFP)] with the cytoplasmic chemotaxis proteins CheY, CheZ and CheA and the flagellar motor protein FliM, and studied their localization in wild-type and mutant cells of Escherichia coli. All but the CheA fusions were functional. The cytoplasmic proteins CheY, CheZ and CheA tended to cluster at the cell poles in a manner similar to that observed earlier for methyl-accepting chemotaxis proteins (MCPs), but only if MCPs were present. Co-localization of CheY and CheZ with MCPs was CheA dependent, and co-localization of CheA with MCPs was CheW dependent, as expected. Co-localization with MCPs was confirmed by immunofluorescence using an anti-MCP primary antibody. The motor protein FliM appeared as discrete spots on the sides of the cell. These were seen in wild-type cells and in a fliN mutant, but not in flhC or fliG mutants. Co-localization with flagellar structures was confirmed by immunofluorescence using an antihook primary antibody. Surprisingly, we did not observe co-localization of CheY with motors, even under conditions in which cells tumbled.

Journal ArticleDOI
TL;DR: Experiments suggest that a particular subset of ChoP+ LOS glycoforms could mediate NTHi invasion of bronchial cells by means of interaction with the PAF receptor.
Abstract: Adherence and invasion are thought to be key events in the pathogenesis of non-typeable Haemophilus influenzae (NTHi). The role of NTHi lipooligosaccharide (LOS) in adherence was examined using an LOS-coated polystyrene bead adherence assay. Beads coated with NTHi 2019 LOS adhered significantly more to 16HBE14 human bronchial epithelial cells than beads coated with truncated LOS isolated from an NTHi 2019 pgmB:ermr mutant (P = 0.037). Adherence was inhibited by preincubation of cell monolayers with NTHi 2019 LOS (P = 0.0009), but not by preincubation with NTHi 2019 pgmB:ermr LOS. Competitive inhibition studies with a panel of compounds containing structures found within NTHi LOS suggested that a phosphorylcholine (ChoP) moiety was involved in adherence. Further experiments revealed that mutations affecting the oligosaccharide region of LOS or the incorporation of ChoP therein caused significant decreases in the adherence to and invasion of bronchial cells by NTHi 2019 (P < 0.01). Analysis of infected monolayers by confocal microscopy showed that ChoP+ NTHi bacilli co-localized with the PAF receptor. Pretreatment of bronchial cells with a PAF receptor antagonist inhibited invasion by NTHi 2109 and two other NTHi strains expressing ChoP+ LOS glycoforms exhibiting high reactivity with an anti-ChoP antibody on colony immunoblots. These data suggest that a particular subset of ChoP+ LOS glycoforms could mediate NTHi invasion of bronchial cells by means of interaction with the PAF receptor.

Journal ArticleDOI
TL;DR: The results are consistent with FeoB‐mediated Fe2+ uptake being a major pathway for H. pylori Fe acquisition in the low‐pH, low‐O2 environment of the stomach.
Abstract: The genome sequence of Helicobacter pylori suggests that this bacterium possesses several Fe acquisition systems, including both Fe2+- and Fe3+-citrate transporters. The role of these transporters was investigated by generating insertion mutants in feoB, tonB, fecA1 and fecDE. Fe transport in the feoB mutant was approximately 10-fold lower than in the wild type (with 0.5 microM Fe), irrespective of whether Fe was supplied in the Fe2+ or Fe3+ form. In contrast, transport rates were unaffected by the other mutations. Complementation of the feoB mutation fully restored both Fe2+ and Fe3+ transport. The growth inhibition exhibited by the feoB mutant in Fe-deficient media was relieved by human holo-transferrin, holo-lactoferrin and Fe3+-dicitrate, but not by FeSO4. The feoB mutant had less cellular Fe and was more sensitive to growth inhibition by transition metals in comparison with the wild type. Biphasic kinetics of Fe2+ transport in the wild type suggested the presence of high- and low-affinity uptake systems. The high-affinity system (apparent Ks = 0.54 microM) is absent in the feoB mutant. Transport via FeoB is highly specific for Fe2+ and was inhibited by FCCP, DCCD and vanadate, indicating an active process energized by ATP. Ferrozine inhibition of Fe2+ and Fe3+ uptake implied the concerted involvement of both an Fe3+ reductase and FeoB in the uptake of Fe supplied as Fe3+. Taken together, the results are consistent with FeoB-mediated Fe2+ uptake being a major pathway for H. pylori Fe acquisition. feoB mutants were unable to colonize the gastric mucosa of mice, indicating that FeoB makes an important contribution to Fe acquisition by H. pylori in the low-pH, low-O2 environment of the stomach.

Journal ArticleDOI
TL;DR: Twenty families of secondary (pmf‐driven) carriers are described which, in addition to nine families within the ATP‐dependent ABC superfamily, and seven families of Gram‐negative bacterial outer membrane porins, largely account for the stereospecific transport of sugars and their derivatives into and out of all living cells on earth.
Abstract: We describe here 20 families of secondary (pmf-driven) carriers which, in addition to nine families within the ATP-dependent ABC superfamily, and seven families of Gram-negative bacterial outer membrane porins, largely account for the stereospecific transport of sugars and their derivatives into and out of all living cells on earth. Family characteristics as well as struc-tural and functional properties of the family constituents are described. By reference to our website (http://www-biology.ucsd.edu/~msaier/transport/), phylogenetic relationships, detailed substrate specificity information and both primary and secondary references are also available. This review provides a comprehensive guide to the diversity of carriers that mediate the transport of sugar-containing molecules across cell and organellar membranes.

Journal ArticleDOI
TL;DR: The cloning and characterization of the single NRAMP genes in Escherichia coli and Salmonella enterica ssp.
Abstract: NRAMPs (natural resistance-associated macrophage proteins) have been characterized in mammals as divalent transition metal transporters involved in iron metabolism and host resistance to certain pathogens. The mechanism of pathogen resistance is proposed to involve sequestration of Fe2+ and Mn2+, cofactors of both prokaryotic and eukaryotic catalases and superoxide dismutases, not only to protect the macrophage against its own generation of reactive oxygen species, but to deny the cations to the pathogen for synthesis of its protective enzymes. NRAMP homologues are also present in bacteria. We report the cloning and characterization of the single NRAMP genes in Escherichia coli and Salmonella enterica ssp. typhimurium, and the cloning of two distinct NRAMP genes from Pseudomonas aeruginosa and an internal fragment of an NRAMP gene in Burkholderia cepacia. The genes are designated mntH because the two enterobacterial NRAMPs encode H+-stimulated, highly selective manganese(II) transport systems, accounting for all Mn2+ uptake in each species under the conditions tested. For S. typhimurium MntH, the Km for 54Mn2+ (≈ 0.1 µM) was pH independent, but maximal uptake increased as pH decreased. Monovalent cations, osmotic strength, Mg2+ and Ca2+ did not inhibit 54Mn2+ uptake. Ni2+, Cu2+ and Zn2+ inhibited uptake with Kis greater than 100 µM, Co2+ with a Ki of 20 µM and Fe2+ with a Ki that decreased from 100 µM at pH 7.6 to 10 µM at pH 5.5. Fe3+ and Pb2+ inhibited weakly, exhibiting Kis of 50 µM, while Cd2+ was a potent inhibitor with a Ki of about 1 µM. E. coli MntH had a similar inhibition profile, except that Kis were three- to 10-fold higher. Both S. typhimurium and E. coli MntH also transport 55Fe2+ however, the Kms are equivalent to the Kis for Fe2+ inhibition of Mn2+ uptake, and are thus too high to be physiologically relevant. In both S. typhimurium and E. coli, mntH::lacZ constructs were strongly induced by hydrogen peroxide, weakly induced by EDTA and unresponsive to paraquat, consistent with the presence of Fur and OxyR binding sites in the promoters. Strains overexpressing mntH were more susceptible to growth inhibition by Mn2+ and Cd2+ than wild type, and strains lacking a functional mntH gene were more susceptible to killing by hydrogen peroxide. In S. typhimurium strain SL1344, mntH mutants showed no defect in invasion of or survival in cultured HeLa or RAW264.7 macrophage cells; however, expression of mntH::lacZ was induced severalfold by 3 h after invasion of the macrophages. S. typhimurium mntH mutants showed only a slight attenuation of virulence in BALB/c mice. Thus, the NRAMP Mn2+ transporter MntH and Mn2+ play a role in bacterial response to reactive oxygen species and possibly have a role in pathogenesis.

Journal ArticleDOI
TL;DR: The current state of the understanding of the α interaction with DNA during basal transcription initiation and activated transcription initiation is reviewed.
Abstract: In recent years, it has become clear that promoter recognition by bacterial RNA polymerase involves interactions not only between core promoter elements and the sigma subunit, but also between a DNA element upstream of the core promoter and the alpha subunit. DNA binding by alpha can increase transcription dramatically. Here we review the current state of our understanding of the alpha interaction with DNA during basal transcription initiation (i.e. in the absence of proteins other than RNA polymerase) and activated transcription initiation (i.e. when stimulated by transcription factors).

Journal ArticleDOI
TL;DR: The Salmonella pathogenicity island-1-encoded type III secretion system mediates the translocation of secreted effector proteins into target epithelial cells as mentioned in this paper.
Abstract: Salmonella pathogenesis is a complex and multifactorial phenomenon. Many genes required for full virulence in mice have been identified, but only a few of these have been shown to be necessary for the induction of enteritis. Likewise, at least some of the Salmonella virulence factors affecting enteritis do not appear to be required for infection of systemic sites in mice. This suggests that subsets of virulence genes influence distinct aspects of Salmonella pathogenesis. Recently, considerable progress has been made in characterizing the virulence mechanisms influencing enteritis caused by non-typhoid Salmonella spp. The Salmonella pathogenicity island-1-encoded type III secretion system mediates the translocation of secreted effector proteins into target epithelial cells. These effector proteins are key virulence factors required for Salmonella intestinal invasion and the induction of fluid secretion and inflammatory responses.

Journal ArticleDOI
TL;DR: The data suggest that chlamydial early gene functions are weighted toward initiation of macromolecular synthesis and the establishment of their intracellular niche by modification of the inclusion membrane.
Abstract: The obligate intracellular bacterium Chlamydia trachomatis has a unique developmental cycle that involves functionally and morphologically distinct cell types adapted for extracellular survival and intracellular multiplication. Infection is initiated by an environmentally resistant cell type called an elementary body (EB). Over the first several hours of infection, EBs differentiate into a larger replicative form, termed the reticulate body (RB). Late in the infectious process, RBs asynchronously begin to differentiate back to EBs, which accumulate within the lumen of the inclusion until released from the host cell for subsequent rounds of infection. In an effort to characterize temporal gene expression in relation to the chlamydial developmental cycle, we have used quantitative-competitive polymerase chain reaction (QC-PCR) and reverse transcription (RT)-PCR techniques. These analyses demonstrate that C. trachomatis double their DNA content every 2-3 h, with synthesis beginning between 2 and 4 h after infection. We determined the onset of transcription of specific temporal classes of developmentally expressed genes. RT-PCR analysis was performed on several genes encoding key enzymes or components of essential biochemical pathways and functions. This comparison encompassed approximately 8% of open reading frames on the C. trachomatis genome. In analysis of total RNA samples harvested at 2, 6, 12 and 20 h after infection, using conditions under which a single chlamydial transcript per infected cell is detected, three major temporal classes of gene expression were resolved. Initiation of transcription appears to occur in three temporal classes which we have operationally defined as: early, which are detected by 2 h after infection during the germination of EBs to RBs; mid-cycle, which appear between 6 and 12 h after infection and represent transcripts expressed during the growth and multiplication of RBs; or late, which appear between 12 and 20 h after infection and represent those genes transcribed during the terminal differentiation of RBs to EBs. Collectively, the data suggest that chlamydial early gene functions are weighted toward initiation of macromolecular synthesis and the establishment of their intracellular niche by modification of the inclusion membrane. Surprisingly, representative enzymes of intermediary metabolism and structural proteins do not appear to be transcribed until 10-12 h after infection; coinciding with the onset of observed binary fission of RBs. Late gene functions appear to be predominately those associated with the terminal differentiation of RBs back to EBs.

Journal ArticleDOI
TL;DR: The psiblast sequence alignment and position‐specific iterated blast search suggest that the CDT holotoxin has intrinsic DNase activity that is associated with the CdtB polypeptide and that thisDNase activity may be responsible for theCDT‐induced cell cycle arrest.
Abstract: Cytolethal distending toxins (CDTs) block cell division by arresting the eukaryotic cell cycle at G2/M. Although previously not recognized in standard blast searches, a position-specific iterated (psi) blast search of the protein data bank using CDT polypeptides as query sequences indicated that CdtB bears significant position-specific homology to type I mammalian DNases. The psiblast sequence alignment reveals that residues of DNase I involved in phosphodiester bond hydrolysis (His134 and His252) are conserved in CdtB as well as their respective hydrogen bond pairs (Glu78 and Asp212). CdtB also contains a pentapeptide motif found in all DNase I enzymes. Further, crude CDT preparations possess detectable DNase activity not associated with identical preparations from control cells. Five CdtB mutations in amino acids corresponding to DNase I active site residues were prepared and expressed together with wild-type CdtA and CdtC polypeptides. Mutation in four of the five DNase-specific active site residues resulted in CDT preparations that lacked DNase activity and failed to induce cellular distension or arrest division of HeLa cells. The fifth mutation, Glu86 (Glu78 in DNase I), retained the ability to induce a moderate level of cell cycle arrest and displayed reduced DNase activity relative to wild-type CDT. Together, these data suggest that the CDT holotoxin has intrinsic DNase activity that is associated with the CdtB polypeptide and that this DNase activity may be responsible for the CDT-induced cell cycle arrest.

Journal ArticleDOI
TL;DR: It is suggested that efa1 encodes a novel virulence‐associated determinant of AEEC, which contributes to the adhesive capacity of these bacteria.
Abstract: Enterohaemorrhagic Escherichia coli (EHEC) are food-borne intestinal pathogens with a low infectious dose. Adhesion of some EHEC strains to epithelial cells is attributed, in part, to intimin, but other factors may be required for the intestinal colonizing ability of these bacteria. In order to identify additional adherence factors of EHEC, we generated transposon mutants of a clinical EHEC isolate of serotype O111:H-, which displayed high levels of adherence to cultured Chinese hamster ovary (CHO) cells. One mutant was markedly deficient in CHO cell adherence, human red blood cell agglutination and autoaggregation. Sequence analysis of the gene disrupted in this mutant revealed a 9669 bp novel chromosomal open reading frame (ORF), which was designated efa1, for EHEC factor for adherence. efa1 displayed 28% amino acid identity with the predicted product of a recently described ORF from the haemolysin-encoding plasmid of EHEC O157:H7. The amino termini of the putative products of these two genes exhibit up to 38% amino acid similarity to Clostridium difficile toxins A and B. efa1 occurred within a novel genetic locus, at least 15 kb in length, which featured a low G+C content, several insertion sequence homologues and a homologue of the Shigella flexneri enterotoxin ShET2. DNA probes prepared from different regions of efa1 hybridized with all of 116 strains of attaching-effacing E. coli (AEEC) of a variety of serotypes, including enteropathogenic E. coli (EPEC) and EHEC, but with none of 91 non-AEEC strains. Nevertheless, efa1 was not required for the attachment-effacement phenotype, and the efa1 locus was not physically linked to the locus for enterocyte effacement (LEE) pathogenicity island, which is responsible for this phenotype in EPEC. These findings suggest that efa1 encodes a novel virulence-associated determinant of AEEC, which contributes to the adhesive capacity of these bacteria.

Journal ArticleDOI
TL;DR: The identified components involved and subsequent reconstitution of the purified translocation reaction have defined the minimal constituents that allowed extensive biochemical characterization of the so‐called translocase.
Abstract: Protein translocation across the bacterial cytoplasmic membrane has been studied extensively in Escherichia coli. The identification of the components involved and subsequent reconstitution of the purified translocation reaction have defined the minimal constituents that allowed extensive biochemical characterization of the so-called translocase. This functional enzyme complex consists of the SecYEG integral membrane protein complex and a peripherally bound ATPase, SecA. Under translocation conditions, four SecYEG heterotrimers assemble into one large protein complex, forming a putative protein-conducting channel. This tetrameric arrangement of SecYEG complexes and the highly dynamic SecA dimer together form a proton-motive force- and ATP-driven molecular machine that drives the stepwise translocation of targeted polypeptides across the cytoplasmic membrane. Recent findings concerning the translocase structure and mechanism of protein translocation are discussed and shine new light on controversies in the field.

Journal ArticleDOI
TL;DR: An overview of lateral transfers affecting genes involved in isopentenyl diphosphate (IPP) synthesis and the phylogenetic diversity of the organisms involved and the range of possible causes and effects of these transfer events make the IPP biosynthetic pathways an ideal system for studying the evolutionary role of LGT.
Abstract: Lateral gene transfer (LGT) is a major force in microbial genome evolution. Here, we present an overview of lateral transfers affecting genes involved in isopentenyl diphosphate (IPP) synthesis. Two alternative metabolic pathways can synthesize this universal precursor of isoprenoids, the 1-deoxy-D-xylulose 5-phosphate (DOXP) pathway and the mevalonate (MVA) pathway. We have surveyed recent genomic data and the biochemical literature to determine the distribution of the genes composing these pathways within the bacterial domain. The scattered distribution observed is incompatible with a simple scheme of vertical transmission. LGT (among and between bacteria, archaea and eukaryotes) more parsimoniously explains many features of this pattern. This alternative scenario is supported by phylogenetic analyses, which unambiguously confirm several cases of lateral transfer. Available biochemical data allow the formulation of hypotheses about selective pressures favouring transfer. The phylogenetic diversity of the organisms involved and the range of possible causes and effects of these transfer events make the IPP biosynthetic pathways an ideal system for studying the evolutionary role of LGT.

Journal ArticleDOI
TL;DR: A decrease in pH, in conjunction with increases in temperature and cell density, acted interdependently for the reciprocal expression of ospC and ospA in BSK‐H medium, prompting a model that allows for predicting the regulation of other B. burgdorferi genes that may be involved in spirochaete transmission, virulence or mammalian host immune responses.
Abstract: The paradigm for differential antigen expression in Borrelia burgdorferi, the agent of Lyme disease, is the reciprocal expression of its outer surface (lipo)proteins (Osp) A and C; as B. burgdorferi transitions from its arthropod vector into mammalian tissue, ospC is upregulated, and ospA is downregulated. In the current study, using B. burgdorferi cultivated under varying conditions in BSK-H medium, we found that a decrease in pH, in conjunction with increases in temperature (e.g. 34 degrees C or 37 degrees C) and cell density, acted interdependently for the reciprocal expression of ospC and ospA. The lower pH (6.8), which induced the reciprocal expression of ospC and ospA in BSK-H medium, correlated with a drop in pH from 7.4 to 6.8 of tick midgut contents during tick feeding. In addition to ospC and ospA, other genes were found to be regulated in reciprocal fashion. Such genes were either ospC-like (e.g. ospF, mlp-8 and rpoS) (group I) or ospA-like (lp6.6 and p22) (group II); changes in expression occurred at the mRNA level. That the expression of rpoS, encoding a putative stress-related alternative sigma factor (sigma(s)), was ospC-like suggested that the expression of some of the group I genes may be controlled through sigma(s). The combined results prompt a model that allows for predicting the regulation of other B. burgdorferi genes that may be involved in spirochaete transmission, virulence or mammalian host immune responses.

Journal ArticleDOI
TL;DR: It is shown that the plague bacillus is most closely related to and has evolved from Y. pestis, and the O‐antigen gene cluster was inactivated as one step in the evolution of Y. pests.
Abstract: One of the most virulent and feared bacterial pathogens is Yersinia pestis, the aetiologic agent of bubonic plague. Characterization of the O-antigen gene clusters of 21 serotypes of Yersinia pseudotuberculosis and the cryptic O-antigen gene cluster of Y. pestis showed that the plague bacillus is most closely related to and has evolved from Y. pseudotuberculosis serotype O:1b. The nucleotide sequences of both gene clusters (about 20.5 kb each) were determined and compared to identify the differences that caused the silencing of the Y. pestis gene cluster. At the nucleotide sequence level, the loci were 98.9% identical and, of the 17 biosynthetic genes identified from the O:1b gene cluster, five were inactivated in the Y. pestis cluster, four by insertions or deletions of one nucleotide and one by a deletion of 62 nucleotides. Apparently, the expression of the O-antigen is not beneficial for the virulence or to the lifestyle of Y. pestis and, therefore, as one step in the evolution of Y. pestis, the O-antigen gene cluster was inactivated.

Journal ArticleDOI
TL;DR: The number of potentially phase variable genes identified in the strain MC58 genome sequence is substantially greater than for any other species studied to date, and would allow N. meningitidis to generate a very large repertoire of phenotypes through expression of these genes in different combinations.
Abstract: Phase variation, mediated through variation in the length of simple sequence repeats, is recognized as an important mechanism for controlling the expression of factors involved in bacterial virulence. Phase variation is associated with most of the currently recognized virulence determinants of Neisseria meningitidis. Based upon the complete genome sequence of the N. meningitidis serogroup B strain MC58, we have identified tracts of potentially unstable simple sequence repeats and their potential functional significance determined on the basis of sequence context. Of the 65 potentially phase variable genes identified, only 13 were previously recognized. Comparison with the sequences from the other two pathogenic Neisseria sequencing projects shows differences in the length of the repeats in 36 of the 65 genes identified, including 25 of those not previously known to be phase variable. Six genes that did not have differences in the length of the repeat instead had polymorphisms such that the gene would not be expected to be phase variable in at least one of the other strains. A further 12 candidates did not have homologues in either of the other two genome sequences. The large proportion of these genes that are associated with frameshifts and with differences in repeat length between the neisserial genome sequences is further corroborative evidence that they are phase variable. The number of potentially phase variable genes is substantially greater than for any other species studied to date, and would allow N. meningitidis to generate a very large repertoire of phenotypes through expression of these genes in different combinations. Novel phase variable candidates identified in the strain MC58 genome sequence include a spectrum of genes encoding glycosyltransferases, toxin related products, and metabolic activities as well as several restriction/modification and bacteriocin-related genes and a number of open reading frames (ORFs) for which the function is currently unknown. This suggests that the potential role of phase variation in mediating bacterium-host interactions is much greater than has been appreciated to date. Analysis of the distribution of homopolymeric tract lengths indicates that this species has sequence-specific mutational biases that favour the instability of sequences associated with phase variation.