scispace - formally typeset
Search or ask a question

Showing papers in "Molecular Neurobiology in 2015"


Journal ArticleDOI
TL;DR: The role of oxidative stress in TBI-mediated secondary damages is addressed by affecting the function of the vascular unit, changes in blood-brain barrier (BBB) permeability, posttraumatic edema formation, and modulation of various pathophysiological factors such as inflammatory factors and enzymes associated with trauma.
Abstract: Traumatic brain injury (TBI) is a major cause of death in the young age group and leads to persisting neurological impairment in many of its victims. It may result in permanent functional deficits because of both primary and secondary damages. This review addresses the role of oxidative stress in TBI-mediated secondary damages by affecting the function of the vascular unit, changes in blood-brain barrier (BBB) permeability, posttraumatic edema formation, and modulation of various pathophysiological factors such as inflammatory factors and enzymes associated with trauma. Oxidative stress plays a major role in many pathophysiologic changes that occur after TBI. In fact, oxidative stress occurs when there is an impairment or inability to balance antioxidant production with reactive oxygen species (ROS) and reactive nitrogen species (RNS) levels. ROS directly downregulate proteins of tight junctions and indirectly activate matrix metalloproteinases (MMPs) that contribute to open the BBB. Loosening of the vasculature and perivascular unit by oxidative stress-induced activation of MMPs and fluid channel aquaporins promotes vascular or cellular fluid edema, enhances leakiness of the BBB, and leads to progression of neuroinflammation. Likewise, oxidative stress activates directly the inflammatory cytokines and growth factors such as IL-1β, tumor necrosis factor-α (TNF-α), and transforming growth factor-beta (TGF-β) or indirectly by activating MMPs. In another pathway, oxidative stress-induced degradation of endothelial vascular endothelial growth factor receptor-2 (VEGFR-2) by MMPs leads to a subsequent elevation of cellular/serum VEGF level. The decrease in VEGFR-2 with a subsequent increase in VEGF-A level leads to apoptosis and neuroinflammation via the activation of caspase-1/3 and IL-1β release.

317 citations


Journal ArticleDOI
TL;DR: It is believed that a better knowledge of the relationship between AD and CR, accompanied by a successful transition of research accomplishments into practice, will impart much relief to individuals suffering from AD.
Abstract: Alzheimer’s disease (AD), as a neurodegenerative process caused by widespread senile plaques and neurofibrillary tangles, is faced with an increasingly higher incidence as the global aging develops. Cognitive reserve (CR) hypothesis is proposed to elucidate the disjunction between cognitive performance and the pathological level of AD, positing that some life span experiences will lend protection from AD pathological insults. We provide an overview on recent studies involved in validation of the hypothesis as well as the association between AD and CR proxies, such as educational attainment and quality, occupational activity, leisure activity, general intelligence, and enriched environment. We further discuss some potential mechanisms by which CR proxy acts against AD pathological insults including neuroplasticity, neurogenesis, and locus coeruleus-noradrenergic (LC/NA) system. Finally, we review the applications of CR theory for AD prevention and therapy, particularly through physical activity and cognitive training strategy. We believe that a better knowledge of the relationship between AD and CR, accompanied by a successful transition of research accomplishments into practice, will impart much relief to individuals suffering from AD.

223 citations


Journal ArticleDOI
TL;DR: E enlightening the detailed biological ability and complicated mechanisms of action of BDNF in the context of AD would provide a future BDNF-related remedy for AD, such as increment in the production or release of endogenous BDNF by some drugs or BDNF mimics.
Abstract: Brain-derived neurotrophic factor (BDNF) has a neurotrophic support on neuron of central nervous system (CNS) and is a key molecule in the maintenance of synaptic plasticity and memory storage in hippocampus. However, changes of BDNF level and expression have been reported in the CNS as well as blood of Alzheimer's disease (AD) patients in the last decade, which indicates a potential role of BDNF in the pathogenesis of AD. Therefore, this review aims to summarize the latest progress in the field of BDNF and its biological roles in AD pathogenesis. We will discuss the interaction between BDNF and amyloid beta (Aβ) peptide, the effect of BDNF on synaptic repair in AD, and the association between BDNF polymorphism and AD risk. The most important is, enlightening the detailed biological ability and complicated mechanisms of action of BDNF in the context of AD would provide a future BDNF-related remedy for AD, such as increment in the production or release of endogenous BDNF by some drugs or BDNF mimics.

182 citations


Journal ArticleDOI
TL;DR: The results suggest that sepsis induces a transient synaptic deficit associated with memory impairments mediated by IL-1β secreted by activated microglia, and the involvement of glial cells in this process is investigated.
Abstract: Recent clinical studies have shown that sepsis survivors may develop long-term cognitive impairments. The cellular and molecular mechanisms involved in these events are not well understood. This study investigated synaptic deficits in sepsis and the involvement of glial cells in this process. Septic animals showed memory impairment and reduced numbers of hippocampal and cortical excitatory synapses, identified by synaptophysin/PSD-95 co-localization, 9 days after disease onset. The behavioral deficits and synaptophysin/PSD-95 co-localization were rescued to normal levels within 30 days post-sepsis. Septic mice presented activation of microglia and reactive astrogliosis, which are hallmarks of brain injury and could be involved in the associated synaptic deficits. We treated neuronal cultures with conditioned medium derived from cultured astrocytes (ACM) and microglia (MCM) that were either non-stimulated or stimulated with lipopolysaccharide (LPS) to investigate the molecular mechanisms underlying synaptic deficits in sepsis. ACM and MCM increased the number of synapses between cortical neurons in vitro, and these effects were antagonized by LPS stimulation. LPS-MCM reduced the number of synapses by 50%, but LPS-ACM increased the number of synapses by 500%. Analysis of the composition of these conditioned media revealed increased levels of IL-1β in LPS-MCM. Furthermore, inhibition of IL-1β signaling through the addition of a soluble IL-1β receptor antagonist (IL-1 Ra) fully prevented the synaptic deficit induced by LPS-MCM. These results suggest that sepsis induces a transient synaptic deficit associated with memory impairments mediated by IL-1β secreted by activated microglia.

125 citations


Journal ArticleDOI
TL;DR: The different high-throughput approaches undertaken to characterize the gene programs downstream of specific activity-regulated transcription factors, including CREB, SRF, MeCP2, Fos, Npas4, and others, and the interplay between epigenetic and transcriptional mechanisms underlying neuronal plasticity changes are discussed.
Abstract: Activity-driven transcription is a key event associated with long-lasting forms of neuronal plasticity. Despite the efforts to investigate the regulatory mechanisms that control this complex process and the important advances in the knowledge of the function of many activity-induced genes in neurons, as well as the specific contribution of activity-regulated transcription factors, our understanding of how activity-driven transcription operates at the systems biology level is still very limited. This review focuses on the research of neuronal activity-driven transcription from an “omics” perspective. We will discuss the different high-throughput approaches undertaken to characterize the gene programs downstream of specific activity-regulated transcription factors, including CREB, SRF, MeCP2, Fos, Npas4, and others, and the interplay between epigenetic and transcriptional mechanisms underlying neuronal plasticity changes. Although basic questions remain unanswered and important challenges still lie ahead, the refinement of genome-wide techniques for investigating the neuronal transcriptome and epigenome promises great advances.

112 citations


Journal ArticleDOI
TL;DR: The underlying mechanisms for HT after ischemic stroke are discussed, an overview of the models commonly used for the study of HT are provided, and biomarkers that might be use for the early detection of this challenging clinical problem are discussed.
Abstract: Intracerebral hemorrhagic transformation (HT) is well recognized as a common cause of hemorrhage in patients with ischemic stroke HT after acute ischemic stroke contributes to early mortality and adversely affects functional recovery The risk of HT is especially high when patients receive thrombolytic reperfusion therapy with tissue plasminogen activator, the only available treatment for ischemic stroke Although many important publications address preclinical models of ischemic stroke, there are no current recommendations regarding the conduct of research aimed at understanding the mechanisms and prediction of HT In this review, we discuss the underlying mechanisms for HT after ischemic stroke, provide an overview of the models commonly used for the study of HT, and discuss biomarkers that might be used for the early detection of this challenging clinical problem

105 citations


Journal ArticleDOI
TL;DR: The results provide further support of the “kynurenine hypothesis of insulin resistance and its progression to T2D” that suggested that overproduction of diabetogenic KP metabolites, induced by chronic stress or chronic low-grade inflammation, is one of the mechanisms promoting development of T1D from pre-diabetes.
Abstract: About 350 million people worldwide have type 2 diabetes (T2D). The major risk factor of T2D is impaired glucose tolerance (pre-diabetes) with 10 % of pre-diabetes subjects develop T2D every year. Understanding of mechanisms of development of T2D from pre-diabetes is important for prevention and treatment of T2D. Chronic stress and chronic low-grade inflammation are prominent risk factors for T2D development in pre-diabetic subjects. However, molecular mechanisms mediating effect of stress and inflammation on development of T2D from pre-diabetes remain unknown. One of such mechanisms might involve kynurenine (KYN) pathway (KP) of tryptophan (TRP) metabolism. We suggested that chronic stress- or chronic low-grade inflammation-induced upregulation of formation of upstream KTP metabolites, KYN and 3-hydroxyKYN, combined with chronic stress- or chronic low-grade inflammation-induced deficiency of pyridoxal 5′-phosphate, a co-factor of downstream enzymes of KTP, triggers overproduction of diabetogenic downstream KYN metabolites, kynurenic acid (KYNA) and 3-hydroxyKYNA (also known as xanthurenic acid (XA)). As the initial assessment of our working hypothesis, we evaluated plasma levels of up- and downstream KP metabolites in the same samples of T2D patients. KYN, XA, and KYNA levels in plasma samples of T2D patients were higher than in samples of non-diabetic subjects. Our results provide further support of “kynurenine hypothesis of insulin resistance and its progression to T2D” that suggested that overproduction of diabetogenic KP metabolites, induced by chronic stress or chronic low-grade inflammation, is one of the mechanisms promoting development of T2D from pre-diabetes. Downstream metabolites of KP might serve as biomarkers of T2D and targets for clinical intervention.

105 citations


Journal ArticleDOI
TL;DR: Investigation of the effects of manual acupuncture on modulating macrophage phenotype and interleukin-10 concentrations in animals with muscle inflammation provides new evidence that MA produces a phenotypic switch in macrophages and increases IL-10 concentration in muscle to reduce pain and inflammation.
Abstract: Muscle pain is a common medical problem that is difficult to treat. One nonpharmacological treatment used is acupuncture, a procedure in which fine needles are inserted into body points with the intent of relieving pain and other symptoms. Here we investigated the effects of manual acupuncture (MA) on modulating macrophage phenotype and interleukin-10 (IL-10) concentrations in animals with muscle inflammation. Carrageenan, injected in the gastrocnemius muscle of mice, induces an inflammatory response characterized by mechanical hyperalgesia and edema. The inflammation is initially a neutrophilic infiltration that converts to a macrophage-dominated inflammation by 48 h. MA of the Sanyinjiao or Spleen 6 (SP6) acupoint reduces nociceptive behaviors, heat, and mechanical hyperalgesia and enhanced escape/avoidance and the accompanying edema. SP6 MA increased muscle IL-10 levels and was ineffective in reducing pain behaviors and edema in IL-10 knockout (IL-10(-/-)) mice. Repeated daily treatments with SP6 MA induced a phenotypic switch of muscle macrophages with reduced M1 macrophages (pro-inflammatory cells) and an increase of M2 macrophages (anti-inflammatory cells and important IL-10 source). These findings provide new evidence that MA produces a phenotypic switch in macrophages and increases IL-10 concentrations in muscle to reduce pain and inflammation.

103 citations


Journal ArticleDOI
TL;DR: It is concluded that, under iron-overload, hepcidin functions to reduce iron in the brain by downregulating iron transport proteins.
Abstract: Iron accumulates progressively in the brain with age, and iron-induced oxidative stress has been considered as one of the initial causes for Alzheimer's disease (AD) and Parkinson's disease (PD). Based on the role of hepcidin in peripheral organs and its expression in the brain, we hypothesized that this peptide has a role to reduce iron in the brain and hence has the potential to prevent or delay brain iron accumulation in iron-associated neurodegenerative disorders. Here, we investigated the effects of hepcidin expression adenovirus (ad-hepcidin) and hepcidin peptide on brain iron contents, iron transport across the brain-blood barrier, iron uptake and release, and also the expression of transferrin receptor-1 (TfR1), divalent metal transporter 1 (DMT1), and ferroportin 1 (Fpn1) in cultured microvascular endothelial cells and neurons. We demonstrated that hepcidin significantly reduced brain iron in iron-overloaded rats and suppressed transport of transferrin-bound iron (Tf-Fe) from the periphery into the brain. Also, the peptide significantly inhibited expression of TfR1, DMT1, and Fpn1 as well as reduced Tf-Fe and non-transferrin-bound iron uptake and iron release in cultured microvascular endothelial cells and neurons, while downregulation of hepcidin with hepcidin siRNA retrovirus generated opposite results. We concluded that, under iron-overload, hepcidin functions to reduce iron in the brain by downregulating iron transport proteins. Upregulation of brain hepcidin by ad-hepcidin emerges as a new pharmacological treatment and prevention for iron-associated neurodegenerative disorders.

103 citations


Journal ArticleDOI
TL;DR: It is demonstrated that PrPSc characteristics in the CSF of human prion disease patients are associated with disease subtypes and rate of decline as defined by disease duration.
Abstract: The development of in vitro amplification systems allows detecting femtomolar amounts of prion protein scrapie (PrP(Sc)) in human cerebrospinal fluid (CSF). We performed a CSF study to determine the effects of prion disease type, codon 129 genotype, PrP(Sc) type, and other disease-related factors on the real-time quaking-induced conversion (RT-QuIC) response. We analyzed times to 10,000 relative fluorescence units, areas under the curve and the signal maximum of RT-QuIC response as seeding parameters of interest. Interestingly, type of prion disease (sporadic vs. genetic) and the PRNP mutation (E200K vs. V210I and FFI), codon 129 genotype, and PrP(Sc) type affected RT-QuIC response. In genetic forms, type of mutation showed the strongest effect on the observed outcome variables. In sporadic CJD, MM1 patients displayed a higher RT-QuIC signal maximum compared to MV1 and VV1. Age and gender were not associated with RT-QuIC signal, but patients with a short disease course showed a higher seeding efficiency of the RT-QuIC response. This study demonstrated that PrP(Sc) characteristics in the CSF of human prion disease patients are associated with disease subtypes and rate of decline as defined by disease duration.

103 citations


Journal ArticleDOI
TL;DR: The findings reveal that an early and significant pathophysiologic effect of ER stress in photoreceptors is the highly efficient elimination of misfolded rhodopsin protein.
Abstract: Rhodopsin is a G protein-coupled receptor essential for vision and rod photoreceptor viability. Disease-associated rhodopsin mutations, such as P23H rhodopsin, cause rhodopsin protein misfolding and trigger endoplasmic reticulum (ER) stress, activating the unfolded protein response (UPR). The pathophysiologic effects of ER stress and UPR activation on photoreceptors are unclear. Here, by examining P23H rhodopsin knock-in mice, we found that the UPR inositol-requiring enzyme 1 (IRE1) signaling pathway is strongly activated in misfolded rhodopsin-expressing photoreceptors. IRE1 significantly upregulated ER-associated protein degradation (ERAD), triggering pronounced P23H rhodopsin degradation. Rhodopsin protein loss occurred as soon as photoreceptors developed, preceding photoreceptor cell death. By contrast, IRE1 activation did not affect JNK signaling or rhodopsin mRNA levels. Interestingly, pro-apoptotic signaling from the PERK UPR pathway was also not induced. Our findings reveal that an early and significant pathophysiologic effect of ER stress in photoreceptors is the highly efficient elimination of misfolded rhodopsin protein. We propose that early disruption of rhodopsin protein homeostasis in photoreceptors could contribute to retinal degeneration.

Journal ArticleDOI
TL;DR: Findings provide evidence that the neuroprotection of KBA against oxidative stress-induced ischemic injury involves the Nrf2/HO-1 pathway, a potential target for neuroprotection in stroke.
Abstract: Oxidative stress is well known to play a pivotal role in cerebral ischemia-reperfusion injury. The nuclear factor erythroid-2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway has been considered a potential target for neuroprotection in stroke. 11-Keto-β-boswellic acid (KBA) is a triterpenoid compound from extracts of Boswellia serrata. The aim of the present study was to determine whether KBA, a novel Nrf2 activator, can protect against cerebral ischemic injury. Middle cerebral artery occlusion (MCAO) was operated on male Sprague-Dawley rats. KBA (25 mg/kg) applied 1 h after reperfusion significantly reduced infarct volumes and apoptotic cells as well as increased neurologic scores at 48 h after reperfusion. Meanwhile, posttreatment with KBA significantly decreased malondialdehyde (MDA) levels, restored the superoxide dismutase (SOD) activity, and increased the protein Nrf2 and HO-1 expression in brain tissues. In primary cultured astrocytes, KBA increased the Nrf2 and HO-1 expression, which provided protection against oxygen and glucose deprivation (OGD)-induced oxidative insult. But knockdown of Nrf2 or HO-1 attenuated the protective effect of KBA. In conclusion, these findings provide evidence that the neuroprotection of KBA against oxidative stress-induced ischemic injury involves the Nrf2/HO-1 pathway.

Journal ArticleDOI
Lin Tan1, Jin-Tai Yu1, Jin-Tai Yu2, Lan Tan1, Lan Tan2 
TL;DR: This work focuses in particular on dysregulation of miRNAs which leads to several neurodegenerative diseases from three aspects: miRNA-generating disorders, mi RNA-targeting genes and epigenetic alterations.
Abstract: Neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD) and amyotrophic lateral sclerosis (ALS), originate from a loss of neurons in the central nervous system (CNS) and are severely debilitating. The incidence of neurodegenerative diseases increases with age, and they are expected to become more common due to extended life expectancy. Because of no clear mechanisms, these diseases have become a major challenge in neurobiology. It is well recognized that these disorders become the culmination of many different genetic and environmental influences. Prior studies have shown that microRNAs (miRNAs) are pathologically altered during the inexorable course of some neurodegenerative diseases, suggesting that miRNAs may be the contributing factor in neurodegeneration. Here, we review what is known about the involvement of miRNAs in the pathogenesis of neurodegenerative diseases. The biogenesis of miRNAs and various functions of miRNAs that act as the chief regulators will be discussed. We focus in particular on dysregulation of miRNAs which leads to several neurodegenerative diseases from three aspects: miRNA-generating disorders, miRNA-targeting genes and epigenetic alterations. Furthermore, recent evidences have shown that circulating miRNA expression levels are changed in patients with neurodegenerative diseases. Circulating miRNA expression levels are reported in patients in order to evaluate their application as biomarkers of these diseases. A discussion is included with a potential diagnostic biomarker and the possible future direction in exploring the nexus between miRNAs and various neurodegenerative diseases.

Journal ArticleDOI
TL;DR: The role of mast cells and glia in neuroinflammation and strategies to modulate their activation based on leveraging natural mechanisms with the capacity for self-defense against inflammation are discussed.
Abstract: Inflammation is fundamentally a protective cellular response aimed at removing injurious stimuli and initiating the healing process. However, when prolonged, it can override the bounds of physiological control and becomes destructive. Inflammation is a key element in the pathobiology of chronic pain, neurodegenerative diseases, stroke, spinal cord injury, and neuropsychiatric disorders. Glia, key players in such nervous system disorders, are not only capable of expressing a pro-inflammatory phenotype but respond also to inflammatory signals released from cells of immune origin such as mast cells. Chronic inflammatory processes may be counteracted by a program of resolution that includes the production of lipid mediators endowed with the capacity to switch off inflammation. These naturally occurring lipid signaling molecules include the N-acylethanolamines, N-arachidonoylethanolamine (an endocannabinoid), and its congener N-palmitoylethanolamine (palmitoylethanolamide or PEA). PEA may play a role in maintaining cellular homeostasis when faced with external stressors provoking, for example, inflammation. PEA is efficacious in mast cell-mediated models of neurogenic inflammation and neuropathic pain and is neuroprotective in models of stroke, spinal cord injury, traumatic brain injury, and Parkinson disease. PEA in micronized/ultramicronized form shows superior oral efficacy in inflammatory pain models when compared to naive PEA. Intriguingly, while PEA has no antioxidant effects per se, its co-ultramicronization with the flavonoid luteolin is more efficacious than either molecule alone. Inhibiting or modulating the enzymatic breakdown of PEA represents a complementary therapeutic approach to treat neuroinflammation. This review is intended to discuss the role of mast cells and glia in neuroinflammation and strategies to modulate their activation based on leveraging natural mechanisms with the capacity for self-defense against inflammation.

Journal ArticleDOI
TL;DR: The hypothesis that AMP-activated protein kinase (AMPK)-dependent autophagy contributed to the neuroprotection of IPC in rats with permanent cerebral ischemia is tested, highlighting AMPK as a therapeutic target for stroke prevention and treatment.
Abstract: Accumulating evidence suggests that ischemic preconditioning (IPC) increases cerebral tolerance to the subsequent ischemic exposure. However, the underlying mechanisms are still not fully understood. In the present study, we tested the hypothesis that AMP-activated protein kinase (AMPK)-dependent autophagy contributed to the neuroprotection of IPC in rats with permanent cerebral ischemia. Male Sprague–Dawley rats were pretreated with vehicle, compound C (an AMPK inhibitor), or 3-methyladenine (3-MA, an autophagy inhibitor) and then were subjected to IPC induced by a 10-min middle cerebral artery occlusion. Afterward, the brain AMPK activity and autophagy biomarkers were measured. At 24 h after IPC, permanent cerebral ischemia was induced in these rats, and infarct volume, neurological deficits as well as cell apoptosis were evaluated 24 h later. We demonstrated that IPC activated AMPK and induced autophagy in the brain, which was accompanied by a reduction of infract volume, neurological deficits, and cell apoptosis after cerebral ischemia. Meanwhile, the IPC-induced autophagy was inhibited by compound C while the neuroprotection of IPC was abolished by compound C or 3-MA. These findings suggest that AMPK-mediated autophagy contributes to the neuroprotection of IPC, highlighting AMPK as a therapeutic target for stroke prevention and treatment.

Journal ArticleDOI
TL;DR: The present review focuses on the chemistry of polyphenols and their role in modulating amyloid precursor protein (APP) processing and provides new hypotheses on how these therapeutic molecules may modulate APP processing, prevent Aβ aggregation, and favor disruption of preformed fibrils.
Abstract: Alzheimer's disease (AD) is a complex and multi- factorial neurodegenerative condition. The complex patholo- gy of this disease includes oxidative stress, metal deposition, formation of aggregates of amyloid and tau, enhanced im- mune responses, and disturbances in cholinesterase. Drugs targeted toward reduction of amyloidal load have been dis- covered, but there is no effective pharmacological treatment for combating the disease so far. Natural products have be- come an important avenue for drug discovery research. Poly- phenols are natural products that have been shown to be effective in the modulation of the type of neurodegenerative changes seen in AD, suggesting a possible therapeutic role. The present review focuses on the chemistry of polyphenols and their role in modulating amyloid precursor protein (APP) processing. We also provide new hypotheses on how these therapeutic molecules may modulate APP processing, prevent Aβ aggregation, and favor disruption of preformed fibrils. Finally, the role of polyphenols in modulating Alzheimer's pathology is discussed.

Journal ArticleDOI
TL;DR: The hypothesis that Sal may act as an effective neuroprotective agent through modulation of the ROS–NO-related mitochondrial pathway in vitro and in vivo is supported.
Abstract: Parkinson's disease is a progressive neurodegenerative disease causing tremor, rigidity, bradykinesia, and gait impairment. Oxidative stress and mitochondrial dysfunction play important roles in the development of Parkinson disease. Salidroside (Sal), a phenylpropanoid glycoside isolated from Rhodiola rosea L., has potent antioxidant properties. Previous work from our group suggests that Sal might protect dopaminergic neurons through inhibition of reactive oxygen species (ROS) and nitric oxide (NO) generation. In the present study, we investigated the protective effects of Sal in MPTP/MPP(+) models of Parkinson's disease in an attempt to elucidate the underlying mechanism of protection. We found that Sal pretreatment protected dopaminergic neurons against MPTP/MPP(+)-induced toxicity in a dose-dependent manner by: (1) reducing the production of ROS-NO, (2) regulating the ratio of Bcl-2/Bax, (3) decreasing cytochrome-c and Smac release, and inhibiting caspase-3, caspas-6, and caspas-9 activation, and (4) reducing α-synuclein aggregation. The present study supports the hypothesis that Sal may act as an effective neuroprotective agent through modulation of the ROS-NO-related mitochondrial pathway in vitro and in vivo.

Journal ArticleDOI
TL;DR: The present study suggests thatTXNIP is contributing to acute ischemic stroke through redox imbalance and inflammasome activation and inhibition of TXNIP may provide a new target for therapeutic interventions.
Abstract: Redox imbalance in the brain significantly contributes to ischemic stroke pathogenesis, but antioxidant therapies have failed in clinical trials. Activation of endogenous defense mechanisms may provide better protection against stroke-induced oxidative injury. TXNIP (thioredoxin-interacting protein) is an endogenous inhibitor of thioredoxin (TRX), a key antioxidant system. We hypothesize that TXNIP inhibition attenuates redox imbalance and inflammation and provides protection against a clinically relevant model of embolic stroke. Male TXNIP-knockout (TKO), wild-type (WT), and WT mice treated with a pharmacological inhibitor of TXNIP, resveratrol (RES; 5 mg/kg body weight), were subjected to embolic middle cerebral artery occlusion (eMCAO). Behavior outcomes were monitored using neurological deficits score and grip strength meter at 24 h after eMCAO. Expression of oxidative, inflammatory, and apoptotic markers was analyzed by Western blot, immunohistochemistry, and slot blot at 24 h post-eMCAO. Our result showed that ischemic injury increases TXNIP in WT mice and that RES inhibits TXNIP expression and protects the brain against ischemic damage. TKO and RES-treated mice exhibited a 39.26 and 41.11 % decrease in infarct size and improved neurological score and grip strength compared to WT mice after eMCAO. Furthermore, the levels of TRX, nitrotyrosine, NOD-like receptor protein (NLRP3), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and activations of caspase-1, caspase-3, and poly-ADP-ribose polymerase (PARP) were significantly (P < 0.05) attenuated in TKO and RES-treated mice. The present study suggests that TXNIP is contributing to acute ischemic stroke through redox imbalance and inflammasome activation and inhibition of TXNIP may provide a new target for therapeutic interventions. This study also affirms the importance of the antioxidant effect of RES on the TRX/TXNIP system.

Journal ArticleDOI
TL;DR: Significant inhibitory effects of BPA are suggested on NSC proliferation and differentiation in the rat via the Wnt/β-catenin signaling pathway.
Abstract: Neurogenesis, a process of generation of new neurons, occurs throughout the life in the hippocampus and sub-ventricular zone (SVZ). Bisphenol-A (BPA), an endocrine disrupter used as surface coating for packaged food cans, injures the developing and adult brain. However, the effects of BPA on neurogenesis and underlying cellular and molecular mechanism(s) are still unknown. Herein, we studied the effect(s) of prenatal and early postnatal exposure of low dose BPA on Wnt/β-catenin signaling pathway that controls different steps of neurogenesis such as neural stem cell (NSC) proliferation and neuronal differentiation. Pregnant rats were treated with 4, 40, and 400 μg BPA/kg body weight orally daily from gestational day 6 to postnatal day 21. Both in vivo and in vitro studies showed that BPA alters NSC proliferation and differentiation. BPA impaired NSC proliferation (5′-bromo-2′-deoxyuridine (BrdU+) and nestin+ cells) and neuronal differentiation (BrdU/doublecortin+ and BrdU/neuronal nuclei (NeuN+) cells) in the hippocampus and SVZ as compared to control. It significantly altered expression/protein levels of neurogenic genes and the Wnt pathway genes in the hippocampus. BPA reduced cellular β-catenin and p-GSK-3β levels and decreased β-catenin nuclear translocation, and cyclin-D1 and TCF/LEF promoter luciferase activity. Specific activation and blockage of the Wnt pathway suggested involvement of this pathway in BPA-mediated inhibition of neurogenesis. Further, blockage of GSK-3β activity by SB415286 and GSK-3β small interfering RNA (siRNA) attenuated BPA-induced downregulation of neurogenesis. Overall, these results suggest significant inhibitory effects of BPA on NSC proliferation and differentiation in the rat via the Wnt/β-catenin signaling pathway.

Journal ArticleDOI
TL;DR: The findings suggest that Drp1-dependent mitochondrial fragmentation plays a crucial role in mediating mitochondrial DNA induced mitochondria abnormalities and cellular dysfunction in sporadic PD.
Abstract: Accumulating data suggests that mitochondrial deficits may underline both sporadic and familial Parkinson's disease (PD) neurodegenerative process. Impairment of mitochondrial dynamics results in reactive oxygen species (ROS) production, decreases mitochondrial membrane potential, and could potentiate the accumulation of dysfunctional mitochondria. Excessive mitochondrial fragmentation is associated with the pathology of sporadic PD. Therefore, we modulated mitochondria fusion and fission in different sporadic PD cellular models. We found alterations in two proteins known to regulate mitochondrial fusion and fission events (OPA1 and Drp1, respectively). OPA1 long isoform cleavage seems to be, at least in part, responsible for mitochondrial fragmented pattern observed in sporadic PD cellular models. Moreover, mitochondrial fragmentation can also occur due to an increase in Drp1 that is translocated into the mitochondria by phosphorylation. To disclose the relevance of these alterations to the fragmentation of the mitochondrial network, we overexpressed OPA1 and knock down Drp1. OPA1 overexpression did not rescue MPP(+)-induced increase in ROS. Nevertheless, Drp1 knockdown due to an increase in mitochondrial elongation and interconnectivity rescued mitochondrial membrane potential and decreased ROS production in sporadic PD cells. Overall, our findings suggest that Drp1-dependent mitochondrial fragmentation plays a crucial role in mediating mitochondrial DNA induced mitochondria abnormalities and cellular dysfunction in sporadic PD.

Journal ArticleDOI
TL;DR: The structure, localization, and function of TYROBP are introduced and the possible roles of the protein and its related receptors in Alzheimer’s disease pathogenesis are speculated.
Abstract: Recently, studies have provided convincing data that TYRO protein tyrosine kinase-binding protein (TYROBP), a key regulator in immune systems, is significantly upregulated in the brain of patients with Alzheimer's disease (AD). TYROBP acts as a signaling adaptor protein for numerous cell surface receptors, playing important roles in signal transduction in dendritic cells, osteoclasts, macrophages, and microglia. Although several TYROBP-related cell surface receptors including triggering receptor expressed on myeloid 2 (TREM2), signal regulatory protein β1 (SIRPβ1), and complement receptor 3 (CR3) were found to participate in the pathogenesis of AD, the role of TYROBP in AD still remains elusive. Emerging piece of evidence has demonstrated that TYROBP could enhance phagocytic activity of microglia, which is responsible for the clearance of amyloid-β (Aβ) peptides and apoptotic neurons. TYROBP also participates in suppression of inflammatory responses by repression of microglia-mediated cytokine production and secretion. In this article, we introduce the structure, localization, and function of TYROBP. Meanwhile, we review recent articles concerning the association of TYROBP and its related receptors with AD pathogenesis and speculate the possible roles of TYROBP in this disease. Based on the potential protective actions of TYROBP in AD pathogenesis, targeting TYROBP might provide new opportunities for AD treatment.

Journal ArticleDOI
TL;DR: It might be possible that targeting the phosphatidylinositol-binding clathrin assembly protein (PICALM) gene might provide promising and novel avenues for AD therapy.
Abstract: Alzheimer's disease (AD) is a highly heritable disease (with heritability up to 76%) with a complex genetic profile of susceptibility, among which large genome-wide association studies (GWASs) pointed to the phosphatidylinositol-binding clathrin assembly protein (PICALM) gene as a susceptibility locus for late-onset Alzheimer's disease (LOAD) incidence. Here, we summarize the known functions of PICALM and discuss its genetic polymorphisms and their potential physiological effects associated with LOAD. Compelling data indicated that PICALM affects AD risk primarily by modulating production, transportation, and clearance of β-amyloid (Aβ) peptide, but other Aβ-independent pathways are discussed, including tauopathy, synaptic dysfunction, disorganized lipid metabolism, immune disorder, and disrupted iron homeostasis. Finally, given the potential involvement of PICALM in facilitating AD occurrence in multiple ways, it might be possible that targeting PICALM might provide promising and novel avenues for AD therapy.

Journal ArticleDOI
TL;DR: Recent epidemiological and genetical findings of SORL1 that related with AD are reviewed and the possible roles of S ORL1 in the progression of this disease are speculated.
Abstract: Genetic variation in SORL1 gene, also known as LR11, has been identified to associate with Alzheimer’s disease (AD) through replicated genetic studies. As a type I transmembrane protein, SORL1 is composed of several distinct domains and belongs to both the low-density lipoprotein receptor (LDLR) family and the vacuolar protein sorting 10 (VPS10) domain receptor family. The level of SORL1 was found to be decreased in the AD brain which positively correlated with β-amyloid (Aβ) accumulation. Emerging data suggests that SORL1 contributes to AD through various pathways, including emerging as a central regulator of the trafficking and processing of amyloid precursor protein (APP), involvement in Aβ destruction, and interaction with ApoE and tau protein. Primarily, SORL1 interacts with distinct sets of cytosolic adaptors for anterograde and retrograde movement of APP between the trans-Golgi network (TGN) and early endosomes, thereby restricting the delivery of the precursor to endocytic compartments that favor amyloidogenic breakdown. In this article, we review recent epidemiological and genetical findings of SORL1 that related with AD and speculate the possible roles of SORL1 in the progression of this disease. Finally, given the potential contributions of SORL1 to AD pathogenesis, targeting SORL1 might present novel opportunities for AD therapy.

Journal ArticleDOI
TL;DR: It is shown that activation of A2A adenosine receptor (AR) with an FDA-approved agonist potently permeabilizes an in vitro primary human BBB (hBBB) to the passage of chemotherapeutic drugs and T cells, and the kinetics of BBB permeability in mice closely overlaps with the permeability Kinetics of the hBBB.
Abstract: The blood-brain barrier (BBB) symbolically represents the gateway to the central nervous system. It is a single layer of specialized endothelial cells that coats the central nervous system (CNS) vasculature and physically separates the brain environment from the blood constituents to maintain the homeostasis of the CNS. However, this protective measure is a hindrance to the delivery of therapeutics to treat neurological diseases. Here, we show that activation of A2A adenosine receptor (AR) with an FDA-approved agonist potently permeabilizes an in vitro primary human BBB (hBBB) to the passage of chemotherapeutic drugs and T cells. T cell migration under AR signaling occurs primarily by paracellular transendothelial route. Permeabilization of the hBBB is rapid, time-dependent, and reversible and is mediated by morphological changes in actin-cytoskeletal reorganization induced by RhoA signaling and a potent downregulation of claudin-5 and VE-cadherin. Moreover, the kinetics of BBB permeability in mice closely overlaps with the permeability kinetics of the hBBB. These data suggest that activation of A2A AR is an endogenous mechanism that may be used for CNS drug delivery in human.

Journal ArticleDOI
TL;DR: A novel role for miR-34a regulation of NSC differentiation is demonstrated, where miR -34a downregulation and subsequent increase of Syt1 and Atg9a appear to be crucial for neurogenesis progression.
Abstract: We have previously demonstrated the involvement of specific apoptosis-associated microRNAs (miRNAs), including miR-34a, in mouse neural stem cell (NSC) differentiation. In addition, a growing body of evidence points to a critical role for autophagy during neuronal differentiation, as a response-survival mechanism to limit oxidative stress and regulate synaptogenesis associated with this process. The aim of this study was to further investigate the precise role of miR-34a during NSC differentiation. Our results showed that miR-34a expression was markedly downregulated during neurogenesis. Neuronal differentiation and cell morphology, synapse function, and electrophysiological maturation were significantly impaired in miR-34a-overexpressing NSCs. In addition, synaptotagmin 1 (Syt1) and autophagy-related 9a (Atg9a) significantly increased during neurogenesis. Pharmacological inhibition of autophagy impaired both neuronal differentiation and cell morphology. Notably, we showed that Syt1 and Atg9a are miR-34a targets in neural differentiation context, markedly decreasing after miR-34a overexpression. Syt1 overexpression and rapamycin-induced autophagy partially rescued the impairment of neuronal differentiation by miR-34a. In conclusion, our results demonstrate a novel role for miR-34a regulation of NSC differentiation, where miR-34a downregulation and subsequent increase of Syt1 and Atg9a appear to be crucial for neurogenesis progression.

Journal ArticleDOI
TL;DR: The introduction of combined next-generation sequencing techniques is enhancing the comprehension of the mechanisms underlying altered transcriptional dysregulation in HD by providing the first genomic landscapes associated with epigenetics and the occupancy of transcription factors.
Abstract: Transcriptional dysregulation in Huntington’s disease (HD) is an early event that shapes the brain transcriptome by both the depletion and ectopic activation of gene products that eventually affect survival and neuronal functions. Disruption in the activity of gene expression regulators, such as transcription factors, chromatin-remodeling proteins, and noncoding RNAs, accounts for the expression changes observed in multiple animal and cellular models of HD and in samples from patients. Here, I review the recent advances in the study of HD transcriptional dysregulation and its causes to finally discuss the possible implications in ameliorative strategies from a genome-wide perspective. To date, the use of genome-wide approaches, predominantly based on microarray platforms, has been successful in providing an extensive catalog of differentially regulated genes, including biomarkers aimed at monitoring the progress of the pathology. Although still incipient, the introduction of combined next-generation sequencing techniques is enhancing our comprehension of the mechanisms underlying altered transcriptional dysregulation in HD by providing the first genomic landscapes associated with epigenetics and the occupancy of transcription factors. In addition, the use of genome-wide approaches is becoming more and more necessary to evaluate the efficacy and safety of ameliorative strategies and to identify novel mechanisms of amelioration that may help in the improvement of current preclinical therapeutics. Finally, the major conclusions obtained from HD transcriptomics studies have the potential to be extrapolated to other neurodegenerative disorders.

Journal ArticleDOI
TL;DR: The potential correlation between BDNF and ADHD is revealed by a case-control study in the Chinese mainland population and the important literatures for the physiological functions of BDNF in the neurodevelopment are summarized.
Abstract: Brain-derived neurotrophic factor (BDNF) is a major neurotrophin in the central nervous system that plays a critical role in the physiological brain functions via its two independent receptors: tropomyosin-related kinase B (TrkB) and p75, especially in the neurodevelopment. Disrupting of BDNF and its downstream signals has been found in many neuropsychological diseases, including attention-deficit hyperactivity disorder (ADHD), a common mental disorder which is prevalent in childhood. Understanding the physiological functions of BDNF during neural development and its potential relationship with ADHD will help us to elucidate the possible mechanisms of ADHD and to develop therapeutic approaches for this disease. In this review, we summarized the important literatures for the physiological functions of BDNF in the neurodevelopment. We also performed an association study on the functional genetic variation of BDNF and ADHD by a case-control study in the Chinese mainland population and revealed the potential correlation between BDNF and ADHD which needs further research to confirm.

Journal ArticleDOI
TL;DR: The results suggest that nicotine inhibits the inflammation mediated by microglia via α7 nAChR and is neuroprotective against ischemic stroke, even when administered 12 h after the insult.
Abstract: Ischemic injury in rodent models reliably leads to the activation of microglia, which might play a detrimental role in neuronal survival. Our preliminary studies suggest that nicotine plays a potential role in decreasing the numbers of cultured microglia in vitro. In the present study, we found treatment with nicotine 2, 6, and 12 h after ischemia for 7 days significantly increased the survival of CA1 pyramidal neurons in ischemia/reperfusion rats. This effect was accompanied by a significant reduction in the increase of microglia rather than astrocytes, as well as a significant reduction of enhanced expression of tumor necrosis factor-alpha (TNF-α) and interleukin-1beta (IL-1β) in CA1 induced by ischemia/reperfusion. Nicotine inhibits microglial proliferation in primary cultures with and without the stimulation of granulocyte–macrophage colony-stimulating factor (GM-CSF). Pre-treatment with α-bungarotoxin, a selective α7 nicotinic acetylcholine receptor (α7 nAChR) antagonist, could prevent the inhibitory effects of nicotine on cultured microglial proliferation suggesting that nicotine inhibits the microglial proliferation in an α7 nAChR-dependent fashion. Our results suggest that nicotine inhibits the inflammation mediated by microglia via α7 nAChR and is neuroprotective against ischemic stroke, even when administered 12 h after the insult. α7 nAChR agonists may have uses as anti-ischemic compounds in humans.

Journal ArticleDOI
TL;DR: Sodium butyrate was able to prevent memory impairment and re-establish hippocampal neurotrophin expression in experimental pneumococcal meningitis.
Abstract: Pneumococcal meningitis is a serious infection of the central nervous system (CNS) with high fatality rates that causes reduced psychomotor performance, slight mental slowness, impairments in attention executive functions and learning and memory deficiencies. Previously, we demonstrated a correlation between memory impairment and decreased levels of brain-derived neurotropic factor (BDNF) in the hippocampi of rats subjected to pneumococcal meningitis. Emerging evidence demonstrates that histone acetylation regulates neurotrophins; therefore, a potential molecular intervention against cognitive impairment in bacterial meningitis may be the histone deacetylase (HDAC) inhibitor, sodium butyrate, which stimulates the acetylation of histones and increases BDNF expression. In this study, animals received either artificial cerebrospinal fluid as a placebo or a Streptococcus pneumoniae suspension at a concentration of 5 × 109 colony-forming units (CFU/mL). The animals received antibiotic treatment as usual and received saline or sodium butyrate as an adjuvant treatment. Ten days after, meningitis was induced; the animals were subjected to open-field habituation and the step-down inhibitory avoidance task. Immediately after these behavioural tasks, the animals were killed, and their hippocampi were removed to evaluate the expression of BDNF, nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF). In the meningitis group that received saline, the animals presented memory impairment in both behavioural tasks, and hippocampal BDNF and GDNF expression was decreased. Sodium butyrate was able to prevent memory impairment and re-establish hippocampal neurotrophin expression in experimental pneumococcal meningitis.

Journal ArticleDOI
TL;DR: It is found that Lf can improve neural development and cognition in postnatal piglets and enhanced the cognitive function and learning of piglets when tested in an eight-arm radial maze.
Abstract: Lactoferrin (Lf) is a sialic acid (Sia)-rich, iron-binding milk glycoprotein that has multifunctional health benefits. Its potential role in neurodevelopment and cognition remains unknown. To test the hypothesis that Lf may function to improve neurodevelopment and cognition, the diet of postnatal piglets was supplemented with Lf from days 3 to 38. Expression levels of selected genes and their cognate protein profiles were quantitatively determined. The importance of our new findings is that Lf (1) upregulated several canonical signaling pathways associated with neurodevelopment and cognition; (2) influenced ~10 genes involved in the brain-derived neurotrophin factor (BDNF) signaling pathway in the hippocampus and upregulated the expression of polysialic acid, a marker of neuroplasticity, cell migration and differentiation of progenitor cells, and the growth and targeting of axons; (3) upregulated transcriptional and translational levels of BDNF and increased phosphorylation of the cyclic adenosine monophosphate (cAMP) response element-binding protein, CREB, a downstream target of the BDNF signaling pathway, and a protein of crucial importance in neurodevelopment and cognition; and (4) enhanced the cognitive function and learning of piglets when tested in an eight-arm radial maze. The finding that Lf can improve neural development and cognition in postnatal piglets has not been previously described.