scispace - formally typeset
Search or ask a question

Showing papers in "Plant Biology in 2013"


Journal ArticleDOI
TL;DR: It is revealed that tree resistance and resilience to drought stress can be modified distinctly through species mixing and the far-reaching implications that these differences in stress response under intra- and inter-specific environments have for forest ecosystem dynamics and management under climate change are discussed.
Abstract: While previous studies focused on tree growth in pure stands, we reveal that tree resistance and resilience to drought stress can be modified distinctly through species mixing. Our study is based on tree ring measurement on cores from increment boring of 559 trees of Norway spruce (Picea abies [L.] Karst.), European beech (Fagus sylvatica [L.]) and sessile oak (Quercus petraea (Matt.) Liebl.) in South Germany, with half sampled in pure, respectively, mixed stands. Indices for resistance, recovery and resilience were applied for quantifying the tree growth reaction on the episodic drought stress in 1976 and 2003. The following general reaction patterns were found. (i) In pure stands, spruce has the lowest resistance, but the quickest recovery; oak and beech were more resistant, but recover was much slower and they are less resilient. (ii) In mixture, spruce and oak perform as in pure stands, but beech was significantly more resistant and resilient than in monoculture. (iii) Especially when mixed with oak, beech is facilitated. We hypothesise that the revealed water stress release of beech emerges in mixture because of the asynchronous stress reaction pattern of beech and oak and a facilitation of beech by hydraulic lift of water by oak. This facilitation of beech in mixture with oak means a contribution to the frequently reported overyield of beech in mixed versus pure stands. We discuss the far-reaching implications that these differences in stress response under intra- and inter-specific environments have for forest ecosystem dynamics and management under climate change.

461 citations


Journal ArticleDOI
TL;DR: It is proposed that photorespiration can assume a major role in the readjustment of redox homeostasis, prevents oxidative damage while optimising photosynthesis and highlights interesting properties evident in plant cells.
Abstract: When plants are exposed to stress, generation of reactive oxygen species (ROS) is often one of the first responses. In order to survive, cells attempt to down-regulate the production of ROS, while at the same time scavenging ROS. Photorespiration is now appreciated as an important part of stress responses in green tissues for preventing ROS accumulation. Photorespiratory reactions can dissipate excess reducing equivalents and energy either directly (using ATP, NAD(P)H and reduced ferredoxin) or indirectly (e.g., via alternative oxidase (AOX) and providing an internal CO2 pool). Photorespiration, however, is also a source of H2 O2 that is possibly involved in signal transduction, resulting in modulation of gene expression. We propose that photorespiration can assume a major role in the readjustment of redox homeostasis. Protection of photosynthesis from photoinhibition through photorespiration is well known. Photorespiration can mitigate oxidative stress under conditions of drought/water stress, salinity, low CO2 and chilling. Adjustments to even mild disturbances in redox status, caused by a deficiency in ascorbate, AOX or chloroplastic NADP-malate dehydrogenase, comprise increases in photorespiratory components such as catalase, P-protein of glycine decarboxylase complex (GDC) and glycine content. The accumulation of excess reducing equivalents or ROS in plant cells also affects mitochondria. Therefore, a strong interaction between the chloroplast redox status and photorespiration is not surprising, but highlights interesting properties evident in plant cells. We draw attention to the fact that a complex network of multiple and dynamic systems, including photorespiration, prevents oxidative damage while optimising photosynthesis. Further experiments are necessary to identify and validate the direct targets of redox signals among photorespiratory components.

282 citations


Journal ArticleDOI
TL;DR: This review provides a comprehensive overview on the roles of ethylene and oxygen as critical signals of flooding stress and a discussion of the dynamics of these gases in plants when underwater, their interaction, current knowledge of their perception mechanisms and the resulting downstream changes that mediate important acclimative processes that allow endurance and survival under flooded conditions.
Abstract: Flooding is a widely occurring environmental stress both for natural and cultivated plant species. The primary problems associated with flooding arise due to restricted gas diffusion underwater. This hampers gas exchange needed for the critical processes of photosynthesis and respiration. Plant acclimation to flooding includes the adaptation of a suite of traits that helps alleviate or avoid these stressful conditions and improves or restores exchange of O2 and CO2 . The manifestation of these traits is, however, reliant on the timely perception of signals that convey the underwater status. Flooding-associated reduced gas diffusion imposes a drastic change in the internal gas composition within submerged plant organs. One of the earliest changes is an increase in the levels of the gaseous plant hormone ethylene. Depending on the species, organ, flooding conditions and time of the day, plants will also subsequently experience a reduction in oxygen levels. This review provides a comprehensive overview on the roles of ethylene and oxygen as critical signals of flooding stress. It includes a discussion of the dynamics of these gases in plants when underwater, their interaction, current knowledge of their perception mechanisms and the resulting downstream changes that mediate important acclimative processes that allow endurance and survival under flooded conditions.

199 citations


Journal ArticleDOI
TL;DR: This model provides information on the complete process of pollen wall development with respect to metabolic pathways and a working model involving substances and catalytic enzyme reactions that occur during pollen development is presented.
Abstract: Pollen grains are surrounded by a sculpted wall, which protects male gametophytes from various environmental stresses and microbial attacks, and also facilitates pollination. Pollen wall development requires lipid and polysaccharide metabolism, and some key genes and proteins that participate in these processes have recently been identified. Here, we summarise the genes and describe their functions during pollen wall development via several metabolic pathways. A working model involving substances and catalytic enzyme reactions that occur during pollen development is also presented. This model provides information on the complete process of pollen wall development with respect to metabolic pathways.

140 citations


Journal ArticleDOI
TL;DR: Possessing the two forms of memory supports the fitness of plants in response to environmental stimuli and stress and a schematic model of plant memory is derived as emergent from integration of the various modules.
Abstract: All memory functions have molecular bases, namely in signal reception and transduction, and in storage and recall of information. Thus, at all levels of organisation living organisms have some kind of memory. In plants one may distinguish two types. There are linear pathways from reception of signals and propagation of effectors to a type of memory that may be described by terms such as learning, habituation or priming. There is a storage and recall memory based on a complex network of elements with a high degree of integration and feedback. The most important elements envisaged are calcium waves, epigenetic modifications of DNA and histones, and regulation of timing via a biological clock. Experiments are described that document the occurrence of the two sorts of memory and which show how they can be distinguished. A schematic model of plant memory is derived as emergent from integration of the various modules. Possessing the two forms of memory supports the fitness of plants in response to environmental stimuli and stress.

106 citations


Journal ArticleDOI
TL;DR: Current knowledge regarding photorespiratory mutants is reviewed and a new level of phenotypic sub-classification is proposed and further questions that should be addressed in the field of photorespiration are presented.
Abstract: Mutations of genes encoding for proteins within the photorespiratory core cycle and associated processes are characterised by lethality under normal air but viability under elevated CO2 conditions. This feature has been described as 'the photorespiratory phenotype' and assumed to be distinctly equal for all of these mutants. In recent years a broad collection of photorespiratory mutants has been isolated, which has allowed a comparative analysis. Distinct phenotypic features were observed when Arabidopsis thaliana mutants defective in photorespiratory enzymes were compared, and during shifts from elevated to ambient CO2 conditions. The exact reasons for the mutant-specific photorespiratory phenotypes are mostly unknown, but they indicate even more plasticity of photorespiratory metabolism. Moreover, a growing body of evidence was obtained that mutant features could be modulated by alterations of several factors, such as CO2 :O2 ratios, photoperiod, light intensity, organic carbon supply and pathogens. Hence, systematic analyses of the responses to these factors appear to be crucial to unravel mechanisms how photorespiration adapts and interacts with the whole cellular metabolism. Here we review current knowledge regarding photorespiratory mutants and propose a new level of phenotypic sub-classification. Finally, we present further questions that should be addressed in the field of photorespiration.

90 citations


Journal ArticleDOI
TL;DR: The hypothesis that certain endophytes are selected for transfer to the next generation and that their presence might be important for subsequent germination and early seedling development is supported.
Abstract: Plant-associated bacteria can have beneficial effects on the growth and health of their host. Nevertheless, the role of endophytic bacteria present in seeds has not been investigated in depth. In this study, the cultivable endophytic population of seeds from Arabidopsis thaliana exposed to 2 μm cadmium for several generations (Cd seeds) was compared with a population isolated from seeds of plants that were never exposed to Cd (control seeds). We observed obvious differences between the two types of seed concerning genera present and phenotypic characteristics of the different isolates. Sinorhizobium sp. and Micrococcus sp. were only found in control seeds, while Pseudomonas sp., Bosea sp. and Paenibacillus sp. were only found in Cd seeds. Sphingomonas sp., Rhizobium sp., Acidovorax sp., Variovorax sp., Methylobacterium sp., Bacillus sp. and Staphylococcus sp. occurred in varying numbers in both types of seed. Metal tolerance and 1-aminocyclopropane-1-carboxylate deaminase activity were predominantly found in strains isolated from Cd seeds, while the production of siderophores, indole-3-acetic acid and organic acids was more prevalent in endophytes isolated from control seeds. These data support the hypothesis that certain endophytes are selected for transfer to the next generation and that their presence might be important for subsequent germination and early seedling development.

85 citations


Journal ArticleDOI
TL;DR: The results suggest that TcWRKY1 participates in regulation of taxol biosynthesis in T. chinensis cells, and that dbat is a target gene of this transcription factor.
Abstract: Although the regulation of taxol biosynthesis at the transcriptional level remains unclear, 10-deacetylbaccatin III-10 β-O-acetyl transferase (DBAT) is a critical enzyme in the biosynthesis of taxol. The 1740 bp fragment 5'-flanking sequence of the dbat gene was cloned from Taxus chinensis cells. Important regulatory elements needed for activity of the dbat promoter were located by deletion analyses in T. chinensis cells. A novel WRKY transcription factor, TcWRKY1, was isolated with the yeast one-hybrid system from a T. chinensis cell cDNA library using the important regulatory elements as bait. The gene expression of TcWRKY1 in T. chinensis suspension cells was specifically induced by methyl jasmonate (MeJA). Biochemical analysis indicated that TcWRKY1 protein specifically interacts with the two W-box (TGAC) cis-elements among the important regulatory elements. Overexpression of TcWRKY1 enhanced dbat expression in T. chinensis suspension cells, and RNA interference (RNAi) reduced the level of transcripts of dbat. These results suggest that TcWRKY1 participates in regulation of taxol biosynthesis in T. chinensis cells, and that dbat is a target gene of this transcription factor. This research also provides a potential candidate gene for engineering increased taxol accumulation in Taxus cell cultures.

85 citations


Journal ArticleDOI
TL;DR: The normal development of roses under blue light reveals the strong adaptive properties of rose plants to their light environment and indicates that photomorphogenetic processes can all be triggered by blue wavelengths and that despite a lower assimilation rate, blue light can provide sufficient energy via photosynthesis to sustain normal growth and development in roses.
Abstract: Through its impact on photosynthesis and morphogenesis, light is the environmental factor that most affects plant architecture. Using light rather than chemicals to manage plant architecture could reduce the impact on the environment. However, the understanding of how light modulates plant architecture is still poor and further research is needed. To address this question, we examined the development of two rose cultivars, Rosa hybrida'Radrazz' and Rosa chinensis'Old Blush', cultivated under two light qualities. Plants were grown from one-node cuttings for 6 weeks under white or blue light at equal photosynthetic efficiencies. While plant development was totally inhibited in darkness, blue light could sustain full development from bud burst until flowering. Blue light reduced the net CO(2) assimilation rate of fully expanded leaves in both cultivars, despite increasing stomatal conductance and intercellular CO(2) concentrations. In 'Radrazz', the reduction in CO(2) assimilation under blue light was related to a decrease in photosynthetic pigment content, while in both cultivars, the chl a/b ratio increased. Surprisingly, blue light could induce the same organogenetic activity of the shoot apical meristem, growth of the metamers and flower development as white light. The normal development of rose plants under blue light reveals the strong adaptive properties of rose plants to their light environment. It also indicates that photomorphogenetic processes can all be triggered by blue wavelengths and that despite a lower assimilation rate, blue light can provide sufficient energy via photosynthesis to sustain normal growth and development in roses.

84 citations


Journal ArticleDOI
TL;DR: The results indicate I. sessilis has floral adaptations, beyond the morphology, that encompass both diurnal and nocturnal pollinator requirements, suggesting a complementary and mixed pollination system.
Abstract: Inga species present brush-type flower morphology allowing them to be visited by distinct groups of pollinators Nectar features in relation to the main pollinators have seldom been studied in this genus To test the hypothesis of floral adaptation to both diurnal and nocturnal pollinators, we studied the pollination ecology of Inga sessilis, with emphasis on the nectar secretion patterns, effects of sequential removals on nectar production, sugar composition and the role of diurnal and nocturnal pollinators in its reproductive success Inga sessilis is self-incompatible and pollinated by hummingbirds, hawkmoths and bats Fruit set under natural conditions is very low despite the fact that most stigmas receive polyads with sufficient pollen to fertilise all ovules in a flower Nectar secretion starts in the bud stage and flowers continually secreting nectar for a period of 8 h Flowers actively reabsorbed the nectar a few hours before senescence Sugar production increased after nectar removal, especially when flowers were drained during the night Nectar sugar composition changed over flower life span, from sucrose-dominant (just after flower opening, when hummingbirds were the main visitors) to hexose-rich (throughout the night, when bats and hawkmoths were the main visitors) Diurnal pollinators contributed less than nocturnal ones to fruit production, but the former were more constant and reliable visitors through time Our results indicate I sessilis has floral adaptations, beyond the morphology, that encompass both diurnal and nocturnal pollinator requirements, suggesting a complementary and mixed pollination system

83 citations


Journal ArticleDOI
TL;DR: Enhanced activation of defence genes by PenC-JSB9 suggests its role in elevated resistance against S. graminicola.
Abstract: Susceptible pearl millet seeds (cv 7042S) were treated with the plant growth promoting fungus Penicillium chrysogenum (PenC-JSB9) at 1 × 10(8) spores·ml(-1) to examine mRNA expression profiles of five defence responsive genes and test its ability to induce resistance to downy mildew caused by Sclerospora graminicola. PenC-JSB9 treatment at 1 × 10(8) CFU·ml(-1) for 6 h significantly enhanced seed germination (9.8- 89%), root length (4.08% to 5.1 cm), shoot length (18.9% to 7.77 cm) and reduced disease incidence (28%) in comparison with untreated controls. In planta colonisation of PenC-JSB9 showed that all three root segments (0-6 cm) and soil dilutions incubated on PDA produced extensive mycelial growth, however colonisation frequency of PenC-JSB9 was significantly higher in soil than in root segments. Spatiotemporal studies revealed that induction of resistance was triggered as early as 24 h and a minimum 2-3 days was optimal for total resistance to build up between inducer treatment and challenge inoculation in both experiments. In Northern blot analysis, transcript accumulation of resistant and PenC-JSB9 induced susceptible cultivars showed higher basal levels of defence gene expression than non-pretreated susceptible controls. Transcript accumulation in resistant seedlings challenge-inoculated with the pathogen showed maximum expression of CHS (3.5-fold increase) and Pr-1a (threefold increase) at 24 and 12 h, respectively. While PenC-JSB9 pretreated susceptible seedlings challenge-inoculated showed rapid and enhanced expression of LOX and POX at 48 h and for CHT at 24 h, whereas non-pretreated susceptible seedlings after pathogen inoculation showed weak expression of hybridised defence genes. Enhanced activation of defence genes by PenC-JSB9 suggests its role in elevated resistance against S. graminicola.

Journal ArticleDOI
TL;DR: Results indicate that drought-exposed saplings adjust their xylem structure to improve resistance and repairing abilities after cavitation, and all species show a significant radial growth reduction, a reduced vessel size with diminished conductivity and a slightly increased density of parenchyma cells.
Abstract: Water is vital for plant performance and survival. Its scarcity, induced by a seasonal decline in soil water availability or an increase of evaporative demand, can cause failures of the water conducting system. An adequate tolerance to drought and the ability to acclimate to changing hydraulic conditions are important features for the survival of long-lived woody plants in dry environments. In this study we examine secondary growth and xylem anatomical acclimation of 6 year old saplings of three European oak species (Quercus robur, Q. petraea, Q. pubescens) during the third consecutive year of exposure to soil drought and ⁄or air warming (from 2007 to 2009). Intra-annual pinning was applied to mark the development of the formation of the annual ring 2009. Vessel size, parenchyma cell density and fiber size produced at different time of the growing season 2009 were compared between drought and warming treatments and species. Drought reduced secondary growth and induced changes in xylem structure while air warming had little effect on wood anatomical traits. Results indicate that drought-exposed saplings adjust their xylem structure to improve resistance and repairing abilities after cavitation. All species show a significant radial growth reduction, a reduced vessel size with diminished conductivity and a slightly increased density of parenchyma cells. Comparisons between species fostered our understanding of the relationship between the interspecific xylem hydraulic plasticity and the ecological response to drought. The stronger changes observed for Q. robur and Q. petraea indicate a lower drought tolerance than Q. pubescens.

Journal ArticleDOI
TL;DR: It is shown that young mixed oak stands can cope with severe drought and therefore can be considered for future forestry, and nutrient availability was governed by water availability under these conditions.
Abstract: Global climate change is expected to increase annual temperatures and decrease summer precipitation in Central Europe. Little is known of how forests respond to the interaction of these climate factors and if their responses depend on soil conditions. In a 3-year lysimeter experiment, we investigated the growth response of young mixed oak stands, on either acidic or calcareous soil, to soil water regime, air-warming and drought treatments corresponding to an intermediate climate change scenario. The air-warming and drought treatments were applied separately as well as in combination. The air-warming treatment had no effect on soil water availability, evapotranspiration or stand biomass. Decreased evapotranspiration from the drought-exposed stands led to significantly higher air and soil temperatures, which were attributed to impaired transpirational cooling. Water limitation significantly reduced the stand foliage, shoot and root biomass as droughts were severe, as shown in low leaf water potentials. Additional air warming did not enhance the drought effects on evapotranspiration and biomass, although more negative leaf water potentials were observed. After re-watering, evapotranspiration increased within a few days to pre-drought levels. Stands not subjected to the drought treatment produced significantly less biomass on the calcareous soil than on the acidic soil, probably due to P or Mn limitation. There was no difference in biomass and water regime between the two soils under drought conditions, indicating that nutrient availability was governed by water availability under these conditions. The results demonstrate that young oak stands can cope with severe drought and therefore can be considered for future forestry.

Journal ArticleDOI
TL;DR: The data obtained agree with the functional conservation of themiR396 family in plants and suggest a role for the miR396/GRF network in determination of floral organ specification.
Abstract: The MIR396 family, composed of ath-miR396a and ath-miR396b in Arabidopsis, is conserved among plant species and is known to target the Growth-Regulating Factor (GRF) gene family. ath-miR396 overexpressors or grf mutants are characterised by small and narrow leaves and show embryogenic defects such as cotyledon fusion. Heterologous expression of ath-miR396a has been reported in tobacco and resulted in reduction of the expression of three NtGRF genes. In this study, the precursor of the Populus trichocarpa ptc-miR396c, with a mature sequence identical to ath-miR396b, was expressed under control of the CaMV35S promoter in tobacco. Typical phenotypes of GRF down-regulation were observed, including cotyledon fusion and lack of shoot apical meristem (SAM). At later stage of growth, transgenic plants had delayed development and altered specification of organ type during flower development. The third and fourth whorls of floral organs were modified into stigmatoid anthers and fasciated carpels, respectively. Several NtGRF genes containing a miR396 binding site were found to be down-regulated, and the cleavage of their corresponding mRNA at the miR396 binding site was confirmed for two of them using RACE-PCR analysis. The data obtained agree with the functional conservation of the miR396 family in plants and suggest a role for the miR396/GRF network in determination of floral organ specification.

Journal ArticleDOI
TL;DR: It is indicated that high ROS scavenging capacity and high abundance of photosynthesis-related proteins might play a role in winter wheat response to abrupt LT stress, in contrast, excess accumulation of soluble sugars might be disadvantageous for LT tolerance in the wheat cultivar Shiluan 02-1.
Abstract: Abrupt temperature reduction in winter wheat at either autumn seedling stage prior to vernalisation or early spring crown stage can cause severe crop damage and reduce production. Many studies have reported the physiological and molecular mechanisms underlying cold acclimation in winter wheat by comparing it with spring wheat. However, processes associated with abrupt temperature reduction in autumn seedling stage prior to vernalisation in winter wheat are less understood. In this study, physiological and molecular responses of winter wheat seedlings to abrupt low temperature (LT) stress were characterised in the relatively LT-tolerant winter wheat cultivar Shixin 828 by comparing it with the relatively LT-sensitive cultivar Shiluan 02-1 using a combination of physiological, proteomics and biochemical approaches. Shixin 828 was tolerant to abrupt LT stress, while Shiluan 02-1 exhibited high levels of reactive oxygen species (ROS) and leaf cell death. Significant increases in relative abundance of antioxidant-related proteins were found in Shixin 828 leaves, which correlate with observed higher antioxidant enzyme activity in Shixin 828 compared to Shiluan 02-1. Proteomics analysis also indicated that carbohydrate metabolism-related proteins were more abundant in Shiluan 02-1, correlating with observed accumulation of soluble sugars in Shiluan 02-1 leaves. Amino acid analysis revealed a strong response to LT stress in wheat leaves. A negative effect of exogenous sucrose on LT tolerance was also found. This study indicates that high ROS scavenging capacity and high abundance of photosynthesis-related proteins might play a role in winter wheat response to abrupt LT stress. In contrast, excess accumulation of soluble sugars might be disadvantageous for LT tolerance in the wheat cultivar Shiluan 02-1.

Journal ArticleDOI
TL;DR: Investigation of seasonal photosynthetic patterns in three European oak species exposed in lysimeter-based open-top chambers to elevated daytime temperature and drought shows that European oaks may benefit from elevated temperature, but detrimental effects can be expected when elevated temperature occurs simultaneously with drought.
Abstract: Oaks are commonly considered as drought- and heat-tolerant trees that might benefit from a warmer and drier climate. Their tolerance to drought has been frequently studied in the past, whereas studies dealing with elevated temperature or its combination with drought are very limited in number. In this study we investigated seasonal photosynthetic patterns in three European oak species (Quercus robur, Q. petraea, Q. pubescens) exposed in lysimeter-based open-top chambers (OTC) to elevated daytime temperature, drought and their combination. Stomatal and nonstomatal traits of photosynthesis were followed over an entire growing season and related to changes in daytime temperature, soil moisture and pre-dawn leaf water potential (WPD). Elevated daytime temperature enhanced net photosynthesis (PN )i n a season-dependent manner, with higher mid-summer rates than in controls exposed to ambient temperature. Drought imposed in early and mid-summer reduced the soil moisture content and caused a gradual decline in WPD, stomatal conductance (gS) and PN. Drought effects on WPD and PN were exacerbated when drought was combined with elevated daytime temperature. In general, PN tended to be more affected by low soil moisture content or low WPD in Q. robur than in Q. petraea and Q. pubescens. Non-stomatal limitations may have contributed to the drought-induced decline of PN in Q. robur, as indicated by a down-regulation of PSII photochemistry (FV ⁄FM) and decreased chlorophyll content. Taken together, our findings show that European oaks may benefit from elevated temperature, but detrimental effects can be expected when elevated temperature occurs simultaneously with drought.

Journal ArticleDOI
TL;DR: The analyses further support the idea that photorespiration and non-photorespiratory peroxisomal metabolism play multi-faceted roles in pathogen defence beyond metabolism of reactive oxygen species.
Abstract: Photorespiration represents one of the major highways of primary plant metabolism and is the most prominent example of metabolic cell organelle integration, since the pathway requires the concerted action of plastidial, peroxisomal, mitochondrial and cytosolic enzymes and organellar transport proteins. Oxygenation of ribulose-1,5-bisphosphate by Rubisco leads to the formation of large amounts of 2-phosphoglycolate, which are recycled to 3-phosphoglycerate by the photorespiratory C2 cycle, concomitant with stoichiometric production rates of H2 O2 in peroxisomes. Apart from its significance for agricultural productivity, a secondary function of photorespiration in pathogen defence has emerged only recently. Here, we summarise literature data supporting the crosstalk between photorespiration and pathogen defence and perform a meta-expression analysis of photorespiratory genes during pathogen attack. Moreover, we screened Arabidopsis proteins newly predicted using machine learning methods to be targeted to peroxisomes, the central H2 O2 -producing organelle of photorespiration, for homologues of known pathogen defence proteins and analysed their expression during pathogen infection. The analyses further support the idea that photorespiration and non-photorespiratory peroxisomal metabolism play multi-faceted roles in pathogen defence beyond metabolism of reactive oxygen species.

Journal ArticleDOI
TL;DR: The results indicate that N fixation might represent an economical, competitive and environmentally friendly choice with respect to mineral N fertilisation for peanut cultivation under moderate saline conditions.
Abstract: Increasing soil salinity represents a major constraint for agriculture in arid and semi-arid lands, where mineral nitrogen (N) deficiency is also a frequent characteristic of soils. Biological N fixation by legumes may constitute a sustainable alternative to chemical fertilisation in salinity-affected areas, provided that adapted cultivars and inoculants are available. Here, the performance of three peanut cultivars nodulated with two different rhizobial strains that differ in their salt tolerance was evaluated under moderately saline water irrigation and compared with that of N-fertilised plants. Shoot weight was used as an indicator of yield. Under non-saline conditions, higher yields were obtained using N fertilisation rather than inoculation for all the varieties tested. However, under salt stress, the yield of inoculated plants became comparable to that of N-fertilised plants, with minor differences depending on the peanut cultivar and rhizobial strain. Our results indicate that N fixation might represent an economical, competitive and environmentally friendly choice with respect to mineral N fertilisation for peanut cultivation under moderate saline conditions.

Journal ArticleDOI
TL;DR: Six different methods used to estimate photorespiration are reviewed, and their advantages and disadvantages discussed.
Abstract: Photorespiration is a process that competes with photosynthesis, in which Rubisco oxygenates, instead of carboxylates, its substrate ribulose 1,5-bisphosphate. The photorespiratory metabolism associated with the recovery of 3-phosphoglycerate is energetically costly and results in the release of previously fixed CO2. The ability to quantify photorespiration is gaining importance as a tool to help improve plant productivity in order to meet the increasing global food demand. In recent years, substantial progress has been made in the methods used to measure photorespiration. Current techniques are able to measure multiple aspects of photorespiration at different points along the photorespiratory C2 cycle. Six different methods used to estimate photorespiration are reviewed, and their advantages and disadvantages discussed.

Journal ArticleDOI
TL;DR: Results indicate that control of water loss discriminated between tolerant and sensitive genotypes and may, therefore, be a reliable indicator of terminal drought stress tolerance.
Abstract: Drought stress is a major constraint on cowpea productivity, since the crop is grown under warm conditions on sandy soils having low water-holding capacity. For enhanced performance of crops facing terminal drought stress, like cowpea, water-saving strategies are crucial. In this work, the growth and transpiration rate (TR) of 40 cowpea genotypes with contrasting response to terminal drought were measured under well-watered conditions across different vapour pressure deficits (VPD) to investigate whether tolerant and sensitive genotypes differ in their control of leaf water loss. A method is presented to indirectly assess TR through canopy temperature (CT) and the index of canopy conductance (Ig). Overall, plants developed larger leaf area under low than under high VPD, and there was a consistent trend of lower plant biomass in tolerant genotypes. Substantial differences were recorded among genotypes in TR response to VPD, with tolerant genotypes having significantly lower TR than sensitive ones, especially at times with the highest VPD. Genotypes differed in TR response to increasing VPD, with some tolerant genotypes exhibiting a clear VPD breakpoint at about 2.25 kPa, above which there was very little increase in TR. In contrast, sensitive genotypes presented a linear increase in TR as VPD increased, and the same pattern was found in some tolerant lines, but with a smaller slope. CT, estimated with thermal imagery, correlated well with TR and Ig and could therefore be used as proxy for TR. These results indicate that control of water loss discriminated between tolerant and sensitive genotypes and may, therefore, be a reliable indicator of terminal drought stress tolerance. The water-saving characteristics of some genotypes are hypothesised to leave more soil water for pod filling, which is crucial for terminal drought adaptation.

Journal ArticleDOI
TL;DR: The results show that species reactions will differ in magnitude during global warming, and impacts of shifts in the timing of phenological events on plant migration and plant-pollinator interactions due to rising temperatures should be considered at the species level.
Abstract: Global climate change influences ecosystems across the world Alpine plant communities have already experienced serious impacts, and will continue to do so as climate change continues The aim of our study was to determine the sensitivity of woody and herbaceous species to shifts in temperature along an altitudinal gradient Since 1994, park rangers have been making phenological observations at 24 sites from 680 to 1425 m asl Each year 21 plant species were observed once or twice weekly from March to July; with a main focus on flowering and leaf unfolding Our study showed a very high degree of dependence of phenophases and species on inter-annual temperature variation and altitude Averaged over all species and phenophases, there was a delay of 38 days with every 100 m increase in altitude and, across all elevations, an advance of phenophases of 6 days per 1 °C increase in temperature Temperature lapse rates assessed indirectly by phenology, as the quotient of altitudinal to temperature response coefficients, were higher than directly calculated from March to July mean temperatures, most likely due to snow effects Furthermore, a significant difference in sensitivity to temperature change was found between growth forms (herbs versus trees) Sensitivity was less pronounced in events occurring later in the season Our results show that species reactions will differ in magnitude during global warming Consequently, impacts of shifts in the timing of phenological events on plant migration and plant-pollinator interactions due to rising temperatures should be considered at the species level

Journal ArticleDOI
TL;DR: An overview about the major current attempts to reduce photorespiratory losses in crop species and suggestions for future research priorities are presented.
Abstract: Reduction of flux through photorespiration has been viewed as a major way to improve crop carbon fixation and yield since the energy-consuming reactions associated with this pathway were discovered. This view has been supported by the biomasses increases observed in model species that expressed artificial bypass reactions to photorespiration. Here, we present an overview about the major current attempts to reduce photorespiratory losses in crop species and provide suggestions for future research priorities.

Journal ArticleDOI
TL;DR: Water stress promotes rooting growth more strongly in transgenic events than in the wild type, especially in deep soil layers, and this leads to increased water extraction, which opens an avenue for tapping these characteristics toward the improvement of drought adaptation inDeep soil conditions, and toward a better understanding of genes involved in rooting in groundnut.
Abstract: Water deficit is a major yield-limiting factor for many crops, and improving the root system has been proposed as a promising breeding strategy, although not in groundnut (Arachis hypogaea L.). The present work was carried out mainly to assess how root traits are influenced under water stress in groundnut, whether transgenics can alter root traits, and whether putative changes lead to water extraction differences. Several transgenic events, transformed with DREB1A driven by the rd29 promoter, along with wild-type JL24, were tested in a lysimeter system that mimics field conditions under both water stress (WS) and well-watered (WW) conditions. The WS treatment increased the maximum rooting depth, although the increase was limited to about 20% in JL24, compared to 50% in RD11. The root dry weight followed a similar trend. Consequently, the root dry weight and length density of transgenics was higher in layers below 100-cm depth (Exp. 1) and below 30 cm (Exp. 2). The root diameter was unchanged under WS treatment, except a slight increase in the 60-90-cm layer. The root diameter increased below 60 cm in both treatments. In the WW treatment, total water extraction of RD33 was higher than in JL24 and other transgenic events, and somewhat lower in RD11 than in JL24. In the WS treatment, water extraction of RD2, RD11 and RD33 was higher than in JL24. These water extraction differences were mostly apparent in the initial 21 days after treatment imposition and were well related to root length density in the 30-60-cm layer (R(2) = 0.68), but not to average root length density. In conclusion, water stress promotes rooting growth more strongly in transgenic events than in the wild type, especially in deep soil layers, and this leads to increased water extraction. This opens an avenue for tapping these characteristics toward the improvement of drought adaptation in deep soil conditions, and toward a better understanding of genes involved in rooting in groundnut.

Journal ArticleDOI
TL;DR: Overall, the high temperatures applied did not affect the germination rate of the tolerant seeds, and Seeds of the savanna species K. coriacea and A. galeata were more tolerant to heat shocks than seeds of the forest species A. macrocarpa.
Abstract: Fire is considered an important factor in influencing the physiognomy, dynamics and composition of Neotropical savannas. Species of diverse physiognomies exhibit different responses to fire, such as population persistence and seed mortality, according to the fire frequency to which they are submitted. The aim of this study is to investigate the effects of heat shocks on seed germination of Anadenanthera macrocarpa (Benth.) Brenan, Dalbergia miscolobium Benth., Aristolochia galeata Mart. & Zucc., Kielmeyera coriacea (Spreng.) Mart. and Guazuma ulmifolia Lam., which are native species of the Brazilian savanna. The temperatures and exposure times to which the seeds were submitted were established according to data obtained in the field during a prescribed fire: 60 °C (10, 20 and 40 min), 80 °C (5, 10 and 20 min) and 100 °C (2, 5 and 10 min). Untreated seeds were used as controls. Seeds of A. galeata and K. coriacea showed high tolerance to most heat treatments, and seeds of A. macrocarpa showed a significant reduction in germination percentage after treatments of 80 °C and 100 °C. Treatments of 100 °C for 10 min reduced germination percentage for all species except G. ulmifolia, which has dormant seeds. For this species, germination was accelerated by heat treatments. The high temperatures applied did not interfere with the time to 50% germination (T(50) ) of the tolerant seeds. Seeds of the savanna species K. coriacea and A. galeata were more tolerant to heat shocks than seeds of the forest species A. macrocarpa. Guazuma ulmifolia, the forest species with seeds that germinate after heat shock, also occurs in savanna physiognomies. Overall, the high temperatures applied did not affect the germination rate of the tolerant seeds.

Journal ArticleDOI
TL;DR: Protection of the cytoplasm can be achieved through production of high endogenous levels of specific compatible solutes in roots and leaves of Prosopis strombulifera, demonstrating a detrimental effect of the sulphate ion on plant growth.
Abstract: The success of Prosopis strombulifera in growing under high NaCl concentrations involves a carefully controlled balance among different processes, including compartmentation of Cl(-) and Na(+) in leaf vacuoles, exclusion of Na(+) in roots, osmotic adjustment and low transpiration. In contrast, Na(2) SO(4) causes growth inhibition and toxicity. We propose that protection of the cytoplasm can be achieved through production of high endogenous levels of specific compatible solutes. To test our hypothesis, we examined endogenous levels of compatible solutes in roots and leaves of 29-, 40- and 48-day-old P. strombulifera plants grown in media containing various concentrations of NaCl, Na(2) SO(4) or in mixtures of both, with osmotic potentials of -1.0,-1.9 and -2.6 MPa, as correlated with changes in hydric parameters. At 24 h after the last pulse plants grown in high NaCl concentrations had higher relative water content and relatively higher osmotic potential than plants grown in Na(2) SO(4) (at 49 days). These plants also had increased synthesis of proline, pinitol and mannitol in the cytoplasm, accompanied by normal carbon metabolism. When the sulphate anion is present in the medium, the capacities for ion compartmentalisation and osmotic adjustment are reduced, resulting in water imbalance and symptoms of toxicity due to altered carbon metabolism, e.g. synthesis of sorbitol instead of mannitol, reduced sucrose production and protein content. This inhibition was partially mitigated when both anions were present together in the solution, demonstrating a detrimental effect of the sulphate ion on plant growth.

Journal ArticleDOI
TL;DR: A view on open questions on plant internal P cycling in woody plants is presented and its control by systemic and environmental factors, and its interaction with the largely closed ecosystem-level P cycle are presented.
Abstract: Phosphorus (P) acquisition, cycling and use efficiency has been investigated intensively with herbaceous plants. It is known that local as well as systemic signalling contributes to the control of P acquisition. Woody plants are long-lived organisms that adapt their life cycle to the changing environment during their annual growth cycle. Little is known about P acquisition and P cycling in perennial plants, especially regarding storage and mobilisation, its control by systemic and environmental factors, and its interaction with the largely closed ecosystem-level P cycle. The present report presents a view on open questions on plant internal P cycling in woody plants.

Journal ArticleDOI
TL;DR: The present study concludes that the two Quercus species studied are somewhat insensitive, due to their distribution covering a wide geographical and climate range, to moderate climate change within Switzerland, and a moderate global warming of B1 scenario (IPCC 2007) will not, or at least less, negatively affect the N and carbon physiology in Q. robur and Q.petraea.
Abstract: Global warming and shortage of water have been evidenced in the recent past and are predicted for the future. Climate change will inevitably have considerable impact on plant physiology, growth, productivity and forest ecosystem functions. The present study determined the effects of simulated daytime air warming (+1 to 1.5 � C during the growing season), drought ()40% and )57% of mean precipitation of 728 mm during the 2007 and 2008 growing season, respectively) and their combination, on leaf nitrogen (N) and non-structural carbohydrates (NSC) of two Quercus species (Q. robur and Q. petraea) and provenances (two provenances for each species) grown in two soil types in Switzerland across two treatment years, to test the hypothesis that leaf N and NSC in the more water-sensitive species (Q. robur) and provenances (originating from water-rich locations) will more strongly respond to global warming and water deficit, compared to those in the more drought-tolerant species (Q. petraea) or provenances. No species- and provenance-specific responses in leaf N and NSC to the climate treatment were found, indicating that the results failed to support our hypothesis. The between-species variation of leaf N and NSC concentrations mainly reflected differences in biology of the two species, and the between-provenance variation of N and NSC concentrations apparently mirrored the climate of their origins. Hence, we conclude that (i) the two Quercus species studied are somewhat insensitive, due to their distribution covering a wide geographical and climate range, to moderate climate change within Switzerland, and (ii) a moderate global warming of B1 scenario (IPCC 2007) will not, or at least less, negatively affect the N and carbon physiology in Q. robur and Q. petraea.

Journal ArticleDOI
TL;DR: It is concluded that vertical partitioning of soil water may have contributed to coexistence of these three growth forms and resulted in a more complex pattern of soilWater extraction than the two-compartment model of soilwater uptake currently used to explain the structure and function of tropical savanna ecosystems.
Abstract: In addition to trees and grasses, the savannas of central Brazil are characterised by a diverse herbaceous dicot flora Here we tested whether the coexistence of a highly diversified assemblage of species resulted in stratification or strong overlap in the use of soil water resources We measured oxygen and hydrogen isotope ratios of stem water from herbs, grasses and trees growing side by side, as well as the isotopic composition of water in soil profile, groundwater and rainfall, and predawn (Ψ(pd)) and midday (Ψ(md)) leaf water potentials We used a stable isotope mixing model to estimate vertical partitioning of soil water by the three growth forms Grasses relied on shallow soil water (5-50 cm) and were strongly anisohydric Ψ(pd) and Ψ(md) decreased significantly from the wet to the dry season Trees extracted water from deeper regions of the soil profile (60-120 cm) and were isohydric Ψ(pd) and Ψ(md) did not change from the wet to the dry season Herbs overlapped with grasses in patterns of water extraction in the dry season (between 10 and 40 cm), but they took up water at soil depths intermediate (70-100 cm) to those of trees and grasses during the wet season They showed seasonal changes in Ψ(pd) but not in Ψ(md) We conclude that vertical partitioning of soil water may have contributed to coexistence of these three growth forms and resulted in a more complex pattern of soil water extraction than the two-compartment model of soil water uptake currently used to explain the structure and function of tropical savanna ecosystems

Journal ArticleDOI
TL;DR: It is concluded that vulnerability to cavitation can be accurately characterised with vulnerability curves constructed using a centrifuge technique, even in long-vesselled species.
Abstract: Vulnerability to cavitation curves describe the decrease in xylem hydraulic conductivity as xylem pressure declines. Several techniques for constructing vulnerability curves use centrifugal force to induce negative xylem pressure in stem or root segments. Centrifuge vulnerability curves constructed for long-vesselled species have been hypothesised to overestimate xylem vulnerability to cavitation due to increased vulnerability of vessels cut open at stem ends that extend to the middle or entirely through segments. We tested two key predictions of this hypothesis: (i) centrifugation induces greater embolism than dehydration in long-vesselled species, and (ii) the proportion of open vessels changes centrifuge vulnerability curves. Centrifuge and dehydration vulnerability curves were compared for a long- and short-vesselled species. The effect of open vessels was tested in four species by comparing centrifuge vulnerability curves for stems of two lengths. Centrifuge and dehydration vulnerability curves agreed well for the long- and short-vesselled species. Centrifuge vulnerability curves constructed using two stem lengths were similar. Also, the distribution of embolism along the length of centrifuged stems matched the theoretical pressure profile induced by centrifugation. We conclude that vulnerability to cavitation can be accurately characterised with vulnerability curves constructed using a centrifuge technique, even in long-vesselled species.

Journal ArticleDOI
TL;DR: Possible scenarios for the evolution of this process toward the well-defined 2PG metabolism in extant plants are discussed, including the origin of the C2 cycle core enzymes and the evolutionary specialisation of peroxisomes.
Abstract: Oxygenic photosynthesis would not be possible without photorespiration in the present day O2 -rich atmosphere. It is now generally accepted that cyanobacteria-like prokaryotes first evolved oxygenic photosynthesis, which was later conveyed via endosymbiosis into a eukaryotic host, which then gave rise to the different groups of algae and streptophytes. For photosynthetic CO2 fixation, all these organisms use RubisCO, which catalyses both the carboxylation and the oxygenation of ribulose 1,5-bisphosphate. One of the reaction products of the oxygenase reaction, 2-phosphoglycolate (2PG), represents the starting point of the photorespiratory C2 cycle, which is considered largely responsible for recapturing organic carbon via conversion to the Calvin-Benson cycle (CBC) intermediate 3-phosphoglycerate, thereby detoxifying critical intermediates. Here we discuss possible scenarios for the evolution of this process toward the well-defined 2PG metabolism in extant plants. While the origin of the C2 cycle core enzymes can be clearly dated back towards the different endosymbiotic events, the evolutionary scenario that allowed the compartmentalised high flux photorespiratory cycle is uncertain, but probably occurred early during the algal radiation. The change in atmospheric CO2 /O2 ratios promoting the acquisition of different modes for inorganic carbon concentration mechanisms, as well as the evolutionary specialisation of peroxisomes, clearly had a dramatic impact on further aspects of land plant photorespiration.