scispace - formally typeset
Search or ask a question

Showing papers in "Toxins in 2010"


Journal ArticleDOI
26 Oct 2010-Toxins
TL;DR: Recent advances in understanding of cisplatin nephrotoxicity are summarized and it is discussed how these advances might lead to more effective prevention.
Abstract: Cisplatin is a widely used and highly effective cancer chemotherapeutic agent. One of the limiting side effects of cisplatin use is nephrotoxicity. Research over the past 10 years has uncovered many of the cellular mechanisms which underlie cisplatin-induced renal cell death. It has also become apparent that inflammation provoked by injury to renal epithelial cells serves to amplify kidney injury and dysfunction in vivo. This review summarizes recent advances in our understanding of cisplatin nephrotoxicity and discusses how these advances might lead to more effective prevention.

1,265 citations


Journal ArticleDOI
05 Jul 2010-Toxins
TL;DR: Genes encoding novel SEs as well as SEls with untested emetic activity are widely represented in S. aureus, and their role in pathogenesis may be underestimated.
Abstract: Staphylococcus aureus produces a wide variety of toxins including staphylococcal enterotoxins (SEs; SEA to SEE, SEG to SEI, SER to SET) with demonstrated emetic activity, and staphylococcal-like (SEl) proteins, which are not emetic in a primate model (SElL and SElQ) or have yet to be tested (SElJ, SElK, SElM to SElP, SElU, SElU2 and SElV). SEs and SEls have been traditionally subdivided into classical (SEA to SEE) and new (SEG to SElU2) types. All possess superantigenic activity and are encoded by accessory genetic elements, including plasmids, prophages, pathogenicity islands, vSa genomic islands, or by genes located next to the staphylococcal cassette chromosome (SCC) implicated in methicillin resistance. SEs are a major cause of food poisoning, which typically occurs after ingestion of different foods, particularly processed meat and dairy products, contaminated with S. aureus by improper handling and subsequent storage at elevated temperatures. Symptoms are of rapid onset and include nausea and violent vomiting, with or without diarrhea. The illness is usually self-limiting and only occasionally it is severe enough to warrant hospitalization. SEA is the most common cause of staphylococcal food poisoning worldwide, but the involvement of other classical SEs has been also demonstrated. Of the new SE/SEls, only SEH have clearly been associated with food poisoning. However, genes encoding novel SEs as well as SEls with untested emetic activity are widely represented in S. aureus, and their role in pathogenesis may be underestimated.

848 citations


Journal ArticleDOI
05 Apr 2010-Toxins
TL;DR: Information on the current understanding of the mechanisms of patulin toxinogenesis is included, and its toxicological effects are summarized.
Abstract: Patulin is a toxic chemical contaminant produced by several species of mold, especially within Aspergillus, Penicillium and Byssochlamys. It is the most common mycotoxin found in apples and apple-derived products such as juice, cider, compotes and other food intended for young children. Exposure to this mycotoxin is associated with immunological, neurological and gastrointestinal outcomes. Assessment of the health risks due to patulin consumption by humans has led many countries to regulate the quantity in food. A full understanding of the molecular genetics of patulin biosynthesis is incomplete, unlike other regulated mycotoxins (aflatoxins, trichothecenes and fumonisins), although the chemical structures of patulin precursors are now known. The biosynthetic pathway consists of approximately 10 steps, as suggested by biochemical studies. Recently, a cluster of 15 genes involved in patulin biosynthesis was reported, containing characterized enzymes, a regulation factor and transporter genes. This review includes information on the current understanding of the mechanisms of patulin toxinogenesis and summarizes its toxicological effects.

444 citations


Journal ArticleDOI
29 Mar 2010-Toxins
TL;DR: This paper will discuss in detail the recent advances in molecular biology of OTA biosynthesis, based on information and on new data about identification and characterization of ochratoxin biosynthetic genes in both Penicillium and Aspergillus species.
Abstract: Ochratoxin A (OTA) is a mycotoxin produced by several species of Aspergillus and Penicillium fungi that structurally consists of a para-chlorophenolic group containing a dihydroisocoumarin moiety that is amide-linked to L-phenylalanine. OTA is detected worldwide in various food and feed sources. Studies show that this molecule can have several toxicological effects such as nephrotoxic, hepatotoxic, neurotoxic, teratogenic and immunotoxic. A role in the etiology of Balkan endemic nephropathy and its association to urinary tract tumors has been also proved. In this review, we will explore the general aspect of OTA: physico-chemical properties, toxicological profile, OTA producing fungi, contaminated food, regulation, legislation and analytical methods. Due to lack of sufficient information related to the molecular background, this paper will discuss in detail the recent advances in molecular biology of OTA biosynthesis, based on information and on new data about identification and characterization of ochratoxin biosynthetic genes in both Penicillium and Aspergillus species. This review will also cover the development of the molecular methods for the detection and quantification of OTA producing fungi in various foodstuffs.

364 citations


Journal ArticleDOI
22 Oct 2010-Toxins
TL;DR: This review examines the potential of one group of compounds called triterpenes, derived from traditional medicine and diet for their ability to suppress inflammatory pathways linked to tumorigenesis, and supports the famous adage of Hippocrates, “Let food be thy medicine and medicine be thy food”.
Abstract: Traditional medicine and diet has served mankind through the ages for prevention and treatment of most chronic diseases. Mounting evidence suggests that chronic inflammation mediates most chronic diseases, including cancer. More than other transcription factors, nuclear factor-kappaB (NF-κB) and STAT3 have emerged as major regulators of inflammation, cellular transformation, and tumor cell survival, proliferation, invasion, angiogenesis, and metastasis. Thus, agents that can inhibit NF-κB and STAT3 activation pathways have the potential to both prevent and treat cancer. In this review, we examine the potential of one group of compounds called triterpenes, derived from traditional medicine and diet for their ability to suppress inflammatory pathways linked to tumorigenesis. These triterpenes include avicins, betulinic acid, boswellic acid, celastrol, diosgenin, madecassic acid, maslinic acid, momordin, saikosaponins, platycodon, pristimerin, ursolic acid, and withanolide. This review thus supports the famous adage of Hippocrates, "Let food be thy medicine and medicine be thy food".

264 citations


Journal ArticleDOI
01 Apr 2010-Toxins
TL;DR: Although mycotoxin contamination of agricultural products still occurs in the developed world, the application of modern agricultural practices and the presence of a legislatively regulated food processing and marketing system have greatly reduced mycotoxins exposure in these populations, in developing countries, much of the population relies on subsistence farming or on unregulated local markets.
Abstract: Mycotoxins are toxic compounds, produced by the secondary metabolism of toxigenic moulds in the Aspergillus, Alternaria, Claviceps, Fusarium, Penicillium and Stachybotrys genera occurring in food and feed commodities both pre- and post-harvest. Adverse human health effects from the consumption of mycotoxins have occurred for many centuries. When ingested, mycotoxins may cause a mycotoxicosis which can result in an acute or chronic disease episode. Chronic conditions have a much greater impact, numerically, on human health in general, and induce diverse and powerful toxic effects in test systems: some are carcinogenic, mutagenic, teratogenic, estrogenic, hemorrhagic, immunotoxic, nephrotoxic, hepatotoxic, dermotoxic and neurotoxic. Although mycotoxin contamination of agricultural products still occurs in the developed world, the application of modern agricultural practices and the presence of a legislatively regulated food processing and marketing system have greatly reduced mycotoxin exposure in these populations. However, in developing countries, where climatic and crop storage conditions are frequently conducive to fungal growth and mycotoxin production, much of the population relies on subsistence farming or on unregulated local markets. Therefore both producers and governmental control authorities are directing their efforts toward the implementation of a correct and reliable evaluation of the real status of contamination of a lot of food commodity and, consequently, of the impact of mycotoxins on human and animal health.

252 citations


Journal ArticleDOI
20 Dec 2010-Toxins
TL;DR: The structure and pharmacology of spider-venom peptides that are being used as leads for the development of therapeutics against a wide range of pathophysiological conditions including cardiovascular disorders, chronic pain, inflammation, and erectile dysfunction are reviewed.
Abstract: Spiders are the most successful venomous animals and the most abundant terrestrial predators. Their remarkable success is due in large part to their ingenious exploitation of silk and the evolution of pharmacologically complex venoms that ensure rapid subjugation of prey. Most spider venoms are dominated by disulfide-rich peptides that typically have high affinity and specificity for particular subtypes of ion channels and receptors. Spider venoms are conservatively predicted to contain more than 10 million bioactive peptides, making them a valuable resource for drug discovery. Here we review the structure and pharmacology of spider-venom peptides that are being used as leads for the development of therapeutics against a wide range of pathophysiological conditions including cardiovascular disorders, chronic pain, inflammation, and erectile dysfunction.

244 citations


Journal ArticleDOI
31 Mar 2010-Toxins
TL;DR: A group of molecules, namely isothiocyanate, curcumin, genistein, epigallocatechin gallate, lycopene and resveratrol, largely studied as chemopreventive agents and with potential clinical applications are focused on.
Abstract: A voluminous literature suggests that an increase in consumption of fruit and vegetables is a relatively easy and practical strategy to reduce significantly the incidence of cancer The beneficial effect is mostly associated with the presence of phytochemicals in the diet This review focuses on a group of them, namely isothiocyanate, curcumin, genistein, epigallocatechin gallate, lycopene and resveratrol, largely studied as chemopreventive agents and with potential clinical applications Cellular and animal studies suggest that these molecules induce apoptosis and arrest cell growth by pleiotropic mechanisms The anticancer efficacy of these compounds may result from their use in monotherapy or in association with chemotherapeutic drugs This latter approach may represent a new pharmacological strategy against several types of cancers However, despite the promising results from experimental studies, only a limited number of clinical trials are ongoing to assess the therapeutic efficacy of these molecules Nevertheless, the preliminary results are promising and raise solid foundations for future investigations

187 citations


Journal ArticleDOI
05 Mar 2010-Toxins
TL;DR: The mechanisms of toxin trafficking by GM1 and retro-translocation of the A1-chain to the cytosol are reviewed and ADP-ribosylating the large G-protein Gs and activating adenylyl cyclase are reviewed.
Abstract: Cholera toxin (CT), an AB5-subunit toxin, enters host cells by binding the ganglioside GM1 at the plasma membrane (PM) and travels retrograde through the trans-Golgi Network into the endoplasmic reticulum (ER). In the ER, a portion of CT, the enzymatic A1-chain, is unfolded by protein disulfide isomerase and retro-translocated to the cytosol by hijacking components of the ER associated degradation pathway for misfolded proteins. After crossing the ER membrane, the A1-chain refolds in the cytosol and escapes rapid degradation by the proteasome to induce disease by ADP-ribosylating the large G-protein Gs and activating adenylyl cyclase. Here, we review the mechanisms of toxin trafficking by GM1 and retro-translocation of the A1-chain to the cytosol.

186 citations


Journal ArticleDOI
21 Jan 2010-Toxins
TL;DR: How curcumin is able to modulate many components of intracellular signaling pathways implicated in inflammation, cell proliferation and invasion and to induce genetic modulations eventually leading to tumor cell death is summarized.
Abstract: As cancer is a multifactor disease, it may require treatment with compounds able to target multiple intracellular components. We summarize here how curcumin is able to modulate many components of intracellular signaling pathways implicated in inflammation, cell proliferation and invasion and to induce genetic modulations eventually leading to tumor cell death. Clinical applications of this natural compound were initially limited by its low solubility and bioavailability in both plasma and tissues but combination with adjuvant and delivery vehicles was reported to largely improve bio-availability of curcumin. Moreover, curcumin was reported to act in synergism with several natural compounds or synthetic agents commonly used in chemotherapy. Based on this, curcumin could thus be considered as a good candidate for cancer prevention and treatment when used alone or in combination with other conventional treatments.

180 citations


Journal ArticleDOI
13 May 2010-Toxins
TL;DR: This review will focus on the (i) known microorganisms and enzymes that are able to biodegrade OTA; (ii) mode of action of biodegradation and (iii) current applications.
Abstract: Ochratoxin A (OTA) is one of the most important mycotoxins that is found in food and feed products. It has proven toxic properties, being primarily known for its nephrotoxicity and carcinogenicity to certain animal species. OTA is produced by several species of Aspergillus and Penicillium that can be found in a wide variety of agricultural products, which makes the presence of OTA in these products common. Many countries have statutory limits for OTA, and concentrations need to be reduced to as low as technologically possible in food and feed. The most important measures to be taken to control OTA are preventive in order to avoid fungal growth and OTA production. However, these measures are difficult to implement in all cases with the consequence of OTA remaining in agricultural commodities. Remediation processes are often used to eliminate, reduce or avoid the toxic effects of OTA. Biological methods have been considered increasingly as an alternative to physical and chemical treatments. However, examples of practical applications are infrequent. This review will focus on the (i) known microorganisms and enzymes that are able to biodegrade OTA; (ii) mode of action of biodegradation and (iii) current applications. A critical discussion about the technical applicability of these strategies is presented.

Journal ArticleDOI
20 Sep 2010-Toxins
TL;DR: The purpose of this review is to provide a toxicological and regulatory overview of some of the toxins present in some commonly consumed foods, and to discuss the steps that have been taken to reduce consumer exposure, many of which are possible because of the unique process of food regulation in the United States.
Abstract: Although many foods contain toxins as a naturally-occurring constituent or, are formed as the result of handling or processing, the incidence of adverse reactions to food is relatively low. The low incidence of adverse effects is the result of some pragmatic solutions by the US Food and Drug Administration (FDA) and other regulatory agencies through the creative use of specifications, action levels, tolerances, warning labels and prohibitions. Manufacturers have also played a role by setting limits on certain substances and developing mitigation procedures for process-induced toxins. Regardless of measures taken by regulators and food producers to protect consumers from natural food toxins, consumption of small levels of these materials is unavoidable. Although the risk for toxicity due to consumption of food toxins is fairly low, there is always the possibility of toxicity due to contamination, overconsumption, allergy or an unpredictable idiosyncratic response. The purpose of this review is to provide a toxicological and regulatory overview of some of the toxins present in some commonly consumed foods, and where possible, discuss the steps that have been taken to reduce consumer exposure, many of which are possible because of the unique process of food regulation in the United States.

Journal ArticleDOI
01 Jun 2010-Toxins
TL;DR: The capacity of DON to evoke ribotoxic stress in mononuclear phagocytes contributes significantly to its acute and chronic toxic effects in vivo.
Abstract: The trichothecene mycotoxin deoxynivalenol (DON) is commonly encountered in human cereal foods throughout the world as a result of infestation of grains in the field and in storage by the fungus Fusarium. Significant questions remain regarding the risks posed to humans from acute and chronic DON ingestion, and how to manage these risks without imperiling access to nutritionally important food commodities. Modulation of the innate immune system appears particularly critical to DON’s toxic effects. Specifically, DON induces activation of mitogen-activated protein kinases (MAPKs) in macrophages and monocytes, which mediate robust induction of proinflammatory gene expression—effects that can be recapitulated in intact animals. The initiating mechanisms for DON-induced ribotoxic stress response appear to involve the (1) activation of constitutive protein kinases on the damaged ribosome and (2) autophagy of the chaperone GRP78 with consequent activation of the ER stress response. Pathological sequelae resulting from chronic low dose exposure include anorexia, impaired weight gain, growth hormone dysregulation and aberrant IgA production whereas acute high dose exposure evokes gastroenteritis, emesis and a shock-like syndrome. Taken together, the capacity of DON to evoke ribotoxic stress in mononuclear phagocytes contributes significantly to its acute and chronic toxic effects in vivo. It is anticipated that these investigations will enable the identification of robust biomarkers of effect that will be applicable to epidemiological studies of the human health effects of this common mycotoxin.

Journal ArticleDOI
25 May 2010-Toxins
TL;DR: The fascinating road leading to the discovery of ETs as the agents responsible for SSSS and the characterization of the molecular mechanism of their action, including recent advances in the field, are reviewed in this article.
Abstract: Staphylococcus aureus is an important pathogen of humans and livestock. It causes a diverse array of diseases, ranging from relatively harmless localized skin infections to life-threatening systemic conditions. Among multiple virulence factors, staphylococci secrete several exotoxins directly associated with particular disease symptoms. These include toxic shock syndrome toxin 1 (TSST-1), enterotoxins, and exfoliative toxins (ETs). The latter are particularly interesting as the sole agents responsible for staphylococcal scalded skin syndrome (SSSS), a disease predominantly affecting infants and characterized by the loss of superficial skin layers, dehydration, and secondary infections. The molecular basis of the clinical symptoms of SSSS is well understood. ETs are serine proteases with high substrate specificity, which selectively recognize and hydrolyze desmosomal proteins in the skin. The fascinating road leading to the discovery of ETs as the agents responsible for SSSS and the characterization of the molecular mechanism of their action, including recent advances in the field, are reviewed in this article.

Journal ArticleDOI
29 Jul 2010-Toxins
TL;DR: There are highly successful products based on natural compounds in the major pesticide classes, including the herbicide glufosinate, the spinosad insecticides, and the strobilurin fungicides, which are discussed.
Abstract: Natural toxins are a source of new chemical classes of pesticides, as well as environmentally and toxicologically safer molecules than many of the currently used pesticides. Furthermore, they often have molecular target sites that are not exploited by currently marketed pesticides. There are highly successful products based on natural compounds in the major pesticide classes. These include the herbicide glufosinate (synthetic phosphinothricin), the spinosad insecticides, and the strobilurin fungicides. These and other examples of currently marketed natural product-based pesticides, as well as natural toxins that show promise as pesticides from our own research are discussed.

Journal ArticleDOI
10 Aug 2010-Toxins
TL;DR: A review of the diverse roles of SE, their possible correlations and the influence in disease progression and therapy in Staphylococcus aureus infections is focused on.
Abstract: Heat-stable enterotoxins are the most notable virulence factors associated with Staphylococcus aureus, a common pathogen associated with serious community and hospital acquired diseases. Staphylococcal enterotoxins (SEs) cause toxic shock-like syndromes and have been implicated in food poisoning. But SEs also act as superantigens that stimulate T-cell proliferation, and a high correlation between these activities has been detected. Most of the nosocomial S. aureus infections are caused by methicillin-resistant S. aureus (MRSA) strains, and those resistant to quinolones or multiresistant to other antibiotics are emerging, leaving a limited choice for their control. This review focuses on these diverse roles of SE, their possible correlations and the influence in disease progression and therapy.

Journal ArticleDOI
02 Dec 2010-Toxins
TL;DR: This review focuses on the renal aspects of D+HUS, a multi-subunit protein complex that binds to a glycosphingolipid receptor, Gb3, on select eukaryotic cell types and is predictive of the sites of action of Shiga toxin.
Abstract: Shiga toxin-producing Escherichia coli is a contaminant of food and water that in humans causes a diarrheal prodrome followed by more severe disease of the kidneys and an array of symptoms of the central nervous system. The systemic disease is a complex referred to as diarrhea-associated hemolytic uremic syndrome (D+HUS). D+HUS is characterized by thrombocytopenia, microangiopathic hemolytic anemia, and acute renal failure. This review focuses on the renal aspects of D+HUS. Current knowledge of this renal disease is derived from a combination of human samples, animal models of D+HUS, and interaction of Shiga toxin with isolated renal cell types. Shiga toxin is a multi-subunit protein complex that binds to a glycosphingolipid receptor, Gb3, on select eukaryotic cell types. Location of Gb3 in the kidney is predictive of the sites of action of Shiga toxin. However, the toxin is cytotoxic to some, but not all cell types that express Gb3. It also can cause apoptosis or generate an inflammatory response in some cells. Together, this myriad of results is responsible for D+HUS disease.

Journal ArticleDOI
10 Nov 2010-Toxins
TL;DR: The most promising way to exploit plant RIPs as weapons against cancer cells is either by designing molecules in which the toxic domains are linked to selective tumor targeting domains or directly delivered as suicide genes for cancer gene therapy.
Abstract: Ribosome-inactivating proteins (RIPs) are EC3.2.32.22 N-glycosidases that recognize a universally conserved stem-loop structure in 23S/25S/28S rRNA, depurinating a single adenine (A4324 in rat) and irreversibly blocking protein translation, leading finally to cell death of intoxicated mammalian cells. Ricin, the plant RIP prototype that comprises a catalytic A subunit linked to a galactose-binding lectin B subunit to allow cell surface binding and toxin entry in most mammalian cells, shows a potency in the picomolar range. The most promising way to exploit plant RIPs as weapons against cancer cells is either by designing molecules in which the toxic domains are linked to selective tumor targeting domains or directly delivered as suicide genes for cancer gene therapy. Here, we will provide a comprehensive picture of plant RIPs and discuss successful designs and features of chimeric molecules having therapeutic potential.

Journal ArticleDOI
23 Apr 2010-Toxins
TL;DR: From this review it is clear that considerable effort is being undertaken by various research groups to phase out the animal tests that are still used for the official routine monitoring programs.
Abstract: Various species of algae can produce marine toxins under certain circumstances. These toxins can then accumulate in shellfish such as mussels, oysters and scallops. When these contaminated shellfish species are consumed severe intoxication can occur. The different types of syndromes that can occur after consumption of contaminated shellfish, the corresponding toxins and relevant legislation are discussed in this review. Amnesic Shellfish Poisoning (ASP), Paralytic Shellfish Poisoning (PSP), Diarrheic Shellfish Poisoning (DSP) and Azaspiracid Shellfish Poisoning (AZP) occur worldwide, Neurologic Shellfish Poisoning (NSP) is mainly limited to the USA and New Zealand while the toxins causing DSP and AZP occur most frequently in Europe. The latter two toxin groups are fat-soluble and can therefore also be classified as lipophilic marine toxins. A detailed overview of the official analytical methods used in the EU (mouse or rat bioassay) and the recently developed alternative methods for the lipophilic marine toxins is given. These alternative methods are based on functional assays, biochemical assays and chemical methods. From the literature it is clear that chemical methods offer the best potential to replace the animal tests that are still legislated worldwide. Finally, an overview is given of the situation of marine toxins in The Netherlands. The rat bioassay has been used for monitoring DSP and AZP toxins in The Netherlands since the 1970s. Nowadays, a combination of a chemical method and the rat bioassay is often used. In The Netherlands toxic events are mainly caused by DSP toxins, which have been found in Dutch shellfish for the first time in 1961, and have reoccurred at irregular intervals and in varying concentrations. From this review it is clear that considerable effort is being undertaken by various research groups to phase out the animal tests that are still used for the official routine monitoring programs.

Journal ArticleDOI
20 Apr 2010-Toxins
TL;DR: Dietary intake studies have confirmed link between endemic nephrotoxicity in humans to their daily household intake of OTA, and recent studies however have warned that OTA and other toxins, such as aristolochic acid, show very similar renal pathology.
Abstract: Ochratoxins are secondary metabolites of Aspergillus and Penicillium, that are hazardous to health through contamination of dietary foods. Ochratoxin A (OTA) remains the single most potent member of this group of mycotoxins. OTA has a long half-life in humans and is thus easily detected in serum. Dietary intake studies have confirmed link between endemic nephrotoxicity in humans to their daily household intake of OTA. OTA has been reported to contribute to endemic nephrotoxicity and carcinogenicity in humans and animals. OTA produces renal tumours, DNA adducts and chromosomal aberrations in kidneys. OTA may be embryotoxic, teratogenic, and immunotoxic only at doses higher than those causing nephrotoxicity. The incidence of endemic nephrotoxicity has been mostly reported in northeast Europe since the early fifties. Recent studies however have warned that OTA and other toxins, such as aristolochic acid, show very similar renal pathology. There is thus the need for thorough co-occurrence studies on toxin incidence.

Journal ArticleDOI
28 Oct 2010-Toxins
TL;DR: The following review summarizes major advances in the field of toxin based therapeutics and offers a comprehensive description of the mode of action of each applied toxin.
Abstract: Protein toxins confer a defense against predation/grazing or a superior pathogenic competence upon the producing organism. Such toxins have been perfected through evolution in poisonous animals/plants and pathogenic bacteria. Over the past five decades, a lot of effort has been invested in studying their mechanism of action, the way they contribute to pathogenicity and in the development of antidotes that neutralize their action. In parallel, many research groups turned to explore the pharmaceutical potential of such toxins when they are used to efficiently impair essential cellular processes and/or damage the integrity of their target cells. The following review summarizes major advances in the field of toxin based therapeutics and offers a comprehensive description of the mode of action of each applied toxin.

Journal ArticleDOI
23 Jul 2010-Toxins
TL;DR: The Clostridium perfringens necrotic enteritis B-like toxin is a recently discovered member of the β-barrel pore-forming toxin family and is produced by a subset of avian C. perfringen type A strains.
Abstract: The Clostridium perfringens necrotic enteritis B-like toxin (NetB) is a recently discovered member of the β-barrel pore-forming toxin family and is produced by a subset of avian C. perfringens type A strains. NetB is cytotoxic for avian cells and is associated with avian necrotic enteritis. This review examines the current state of knowledge of NetB: its role in pathogenesis, its distribution and expression in C. perfringens and its vaccine potential.

Journal ArticleDOI
30 Mar 2010-Toxins
TL;DR: Parasitization has an enormous impact on hosts physiology of which five major effects are discussed in this review: the impact on immune responses, induction of developmental arrest, increases in lipid levels, apoptosis and nutrient releases.
Abstract: Adult females of Nasonia vitripennis inject a venomous mixture into its host flies prior to oviposition. Recently, the entire genome of this ectoparasitoid wasp was sequenced, enabling the identification of 79 venom proteins. The next challenge will be to unravel their specific functions, but based on homolog studies, some predictions already can be made. Parasitization has an enormous impact on hosts physiology of which five major effects are discussed in this review: the impact on immune responses, induction of developmental arrest, increases in lipid levels, apoptosis and nutrient releases. The value of deciphering this venom is also discussed.

Journal ArticleDOI
29 Jun 2010-Toxins
TL;DR: The pathogenicity exerted by B. cereus toxins is described with particular attention to the regulatory mechanisms of production and secretion of HBL, Nhe and CytK enterotoxins.
Abstract: Bacillus cereus behaves as an opportunistic pathogen frequently causing gastrointestinal diseases, and it is increasingly recognized to be responsible for severe local or systemic infections. Pathogenicity of B. cereus mainly relies on the secretion of a wide array of toxins and enzymes and also on the ability to undergo swarming differentiation in response to surface-sensing. In this report, the pathogenicity exerted by B. cereus toxins is described with particular attention to the regulatory mechanisms of production and secretion of HBL, Nhe and CytK enterotoxins.

Journal ArticleDOI
24 Mar 2010-Toxins
TL;DR: It is shown that the osmoadaptative response is conserved but not identical in different fungi, and that the response to osmotic stress is also coupled to the biosynthesis of natural products, including mycotoxins.
Abstract: Environmental stimuli trigger an adaptative cellular response to optimize the probability of survival and proliferation. In eukaryotic organisms from mammals to fungi osmotic stress, mainly through the action of the high osmolarity glycerol (HOG) pathway, leads to a response necessary for adapting and surviving hyperosmotic environments. In this review we show that the osmoadaptative response is conserved but not identical in different fungi. The osmoadaptative response system is also intimately linked to morphogenesis in filamentous fungi, including mycotoxin producers. Previous studies indicate that the response to osmotic stress is also coupled to the biosynthesis of natural products, including mycotoxins.

Journal ArticleDOI
10 Aug 2010-Toxins
TL;DR: An integrated gene-to-protein approach for characterizing staphylococcal food poisoning is advocated, and all SEs have superantigenic activity whereas only a few have been proved to be emetic, representing a potential hazard for consumers.
Abstract: Staphylococcal food poisoning is one of the most common food-borne diseases and results from the ingestion of staphylococcal enterotoxins (SEs) preformed in food by enterotoxigenic strains of Staphylococcus aureus. To date, more than 20 SEs have been described: SEA to SElV. All SEs have superantigenic activity whereas only a few have been proved to be emetic, representing a potential hazard for consumers. Characterization of staphylococcal food poisoning outbreaks (SFPOs) has considerably progressed compared to 80 years ago, when staphylococci were simply enumerated and only five enterotoxins were known for qualitative detection. Today, SFPOs can be characterized by a number of approaches, such as the identification of S. aureus biovars, PCR and RT-PCR methods to identify the se genes involved, immunodetection of specific SEs, and absolute quantification by mass spectrometry. An integrated gene-to-protein approach for characterizing staphylococcal food poisoning is advocated.

Journal ArticleDOI
14 May 2010-Toxins
TL;DR: Only some OTA producing species are known to be a potential source of OTA contamination of cereals and certain common foods and beverages such as bread, beer, coffee, dried fruits, grape juice and wine among others.
Abstract: Ochratoxin A (OTA) producing fungi are members of the genera Aspergillus and Penicillium. Nowadays, there are about 20 species accepted as OTA producers, which are distributed in three phylogenetically related but distinct groups of aspergilli of the subgenus Circumdati and only in two species of the subgenus Penicillium. At the moment, P. verrucosum and P. nordicum are the only OTA producing species accepted in the genus Penicillium. However, during the last century, OTA producers in this genus were classified as P. viridicatum for many years. At present, only some OTA producing species are known to be a potential source of OTA contamination of cereals and certain common foods and beverages such as bread, beer, coffee, dried fruits, grape juice and wine among others. Penicillium verrucosum is the major producer of OTA in cereals such as wheat and barley in temperate and cold climates. Penicillium verrucosum and P. nordicum can be recovered from some dry-cured meat products and some cheeses.

Journal ArticleDOI
28 May 2010-Toxins
TL;DR: The biogenesis of SPATEs is discussed, including their function as toxins, and some of these secreted proteases are toxins, eliciting various effects on mammalian cells.
Abstract: Serine Protease Autotransporters of Enterobacteriaceae (SPATEs) constitute a large family of proteases secreted by Escherichia coli and Shigella. SPATEs exhibit two distinct proteolytic activities. First, a C-terminal catalytic site triggers an intra-molecular cleavage that releases the N-terminal portion of these proteins in the extracellular medium. Second, the secreted N-terminal domains of SPATEs are themselves proteases; each contains a canonical serine-protease catalytic site. Some of these secreted proteases are toxins, eliciting various effects on mammalian cells. Here, we discuss the biogenesis of SPATEs and their function as toxins.

Journal ArticleDOI
25 Jun 2010-Toxins
TL;DR: Comparisons and differences in the structure and function of bacterial and plant AB toxins that underlie their toxicity and their exceptional properties as immunomodulators for stimulating immune responses against infectious disease and for immune suppression of organ-specific autoimmunity are examined.
Abstract: To ensure their survival, a number of bacterial and plant species have evolved a common strategy to capture energy from other biological systems. Being imperfect pathogens, organisms synthesizing multi-subunit AB toxins are responsible for the mortality of millions of people and animals annually. Vaccination against these organisms and their toxins has proved rather ineffective in providing long-term protection from disease. In response to the debilitating effects of AB toxins on epithelial cells of the digestive mucosa, mechanisms underlying toxin immunomodulation of immune responses have become the focus of increasing experimentation. The results of these studies reveal that AB toxins may have a beneficial application as adjuvants for the enhancement of immune protection against infection and autoimmunity. Here, we examine similarities and differences in the structure and function of bacterial and plant AB toxins that underlie their toxicity and their exceptional properties as immunomodulators for stimulating immune responses against infectious disease and for immune suppression of organ-specific autoimmunity.

Journal ArticleDOI
14 Jul 2010-Toxins
TL;DR: This review considers the mechanisms of TcdA- and TcdB-induced enterotoxicity, and recent developments in this field.
Abstract: The major virulence factors of Clostridium difficile infection (CDI) are two large exotoxins A (TcdA) and B (TcdB) However, our understanding of the specific roles of these toxins in CDI is still evolving It is now accepted that both toxins are enterotoxic and proinflammatory in the human intestine Both purified TcdA and TcdB are capable of inducing the pathophysiology of CDI, although most studies have focused on TcdA C difficile toxins exert a wide array of biological activities by acting directly on intestinal epithelial cells Alternatively, the toxins may target immune cells and neurons once the intestinal epithelial barrier is disrupted The toxins may also act indirectly by stimulating cells to produce chemokines, proinflammatory cytokines, neuropeptides and other neuroimmune signals This review considers the mechanisms of TcdA- and TcdB-induced enterotoxicity, and recent developments in this field