scispace - formally typeset
Search or ask a question

Showing papers in "Transport in Porous Media in 1996"


Journal ArticleDOI
TL;DR: In this article, the authors derived the cubic law of the Navier-Stokes equations for flow between smooth, parallel plates and showed that the effective hydraulic aperture is less than the mean aperture, by a factor that depends on the ratio of the mean value of the aperture to its standard deviation.
Abstract: The flow of a single-phase fluid through a rough-walled rock fracture is discussed within the context of fluid mechanics. The derivation of the ‘cubic law’ is given as the solution to the Navier-Stokes equations for flow between smooth, parallel plates - the only fracture geometry that is amenable to exact treatment. The various geometric and kinematic conditions that are necessary in order for the Navier-Stokes equations to be replaced by the more tractable lubrication or Hele-Shaw equations are studied and quantified. In general, this requires a sufficiently low flow rate, and some restrictions on the spatial rate of change of the aperture profile. Various analytical and numerical results are reviewed pertaining to the problem of relating the effective hydraulic aperture to the statistics of the aperture distribution. These studies all lead to the conclusion that the effective hydraulic aperture is less than the mean aperture, by a factor that depends on the ratio of the mean value of the aperture to its standard deviation. The tortuosity effect caused by regions where the rock walls are in contact with each other is studied using the Hele-Shaw equations, leading to a simple correction factor that depends on the area fraction occupied by the contact regions. Finally, the predicted hydraulic apertures are compared to measured values for eight data sets from the literature for which aperture and conductivity data were available on the same fracture. It is found that reasonably accurate predictions of hydraulic conductivity can be made based solely on the first two moments of the aperture distribution function, and the proportion of contact area.

1,003 citations


Journal ArticleDOI
TL;DR: In this article, the volume averaged momentum equation is used to derive Darcy's law with the Forchheimer correction for homogeneous porous media, and the closure problem can be used to prove that F is a linear function of the velocity, and order of magnitude analysis suggests that this linear dependence may persist for a wide range of Reynolds numbers.
Abstract: In this paper we illustrate how the method of volume averaging can be used to derive Darcy's law with the Forchheimer correction for homogeneous porous media. Beginning with the Navier-Stokes equations, we find the volume averaged momentum equation to be given by $$\langle v_\beta \rangle = - \frac{K}{{\mu _\beta }} \cdot ( abla \langle p_\beta \rangle ^\beta - \rho _\beta g) - F\cdot \langle v_\beta \rangle .$$ The Darcy's law permeability tensor, K, and the Forchheimer correction tensor, F, are determined by closure problems that must be solved using a spatially periodic model of a porous medium. When the Reynolds number is small compared to one, the closure problem can be used to prove that F is a linear function of the velocity, and order of magnitude analysis suggests that this linear dependence may persist for a wide range of Reynolds numbers.

631 citations


Journal ArticleDOI
TL;DR: In this paper, the authors examined the hydro-mechanical aspect of the sand production problem and set the basic frame of corresponding mathematical modelling, and showed that surface erosion is accompanied by high changes of porosity and permeability close to the free surface.
Abstract: This paper examines the hydro-mechanical aspect of the sand production problem and sets the basic frame of the corresponding mathematical modelling. Accordingly, piping and surface erosion effects are studied on the basis of mass balance and particle transport considerations as well as Darcy's law. The results show that surface erosion is accompanied by high changes of porosity and permeability close to the free surface. Quantities which can be measured in experiment, like the amount of produced solids or fluid discharge, can be used in an inverse way to determine the constitutive parameters of the problem.

219 citations


Journal ArticleDOI
TL;DR: In this article, the macroscopic capillary number is defined as the ratio between the macro-scopic viscous pressure drop and the microscopic capillary pressure, which is a measure of the ratio of the two quantities.
Abstract: A basic re-examination of the traditional dimensional analysis of microscopic and macroscopic multiphase flow equations in porous media is presented. We introduce a ‘macroscopic capillary number’\(\overline {Ca}\) which differs from the usual microscopic capillary number Ca in that it depends on length scale, type of porous medium and saturation history. The macroscopic capillary number\(\overline {Ca}\) is defined as the ratio between the macroscopic viscous pressure drop and the macroscopic capillary pressure.\(\overline {Ca}\) can be related to the microscopic capillary number Ca and the LeverettJ-function. Previous dimensional analyses contain a tacit assumption which amounts to setting\(\overline {Ca}\) = 1. This fact has impeded quantitative upscaling in the past. Our definition for\(\overline {Ca}\), however, allows for the first time a consistent comparison between macroscopic flow experiments on different length scales. Illustrative sample calculations are presented which show that the breakpoint in capillary desaturation curves for different porous media appears to occur at\(\overline {Ca}\) ≈ 1. The length scale related difference between the macroscopic capillary number\(\overline {Ca}\) for core floods and reservoir floods provides a possible explanation for the systematic difference between residual oil saturations measured in field floods as compared to laboratory experiment.

137 citations


Journal ArticleDOI
TL;DR: In this paper, the problem of disposal of industrial waste greenhouse gases (CO2) into deep reservoirs was dealt with, and the simulator TOUGH2 was used to model the injection of 100 kg/s of CO2 for 10 years into an aquifer 3 km deep with the object of evaluating the long-term storage prospects for this gas.
Abstract: This paper deals with the problem of disposal of industrial waste greenhouse gases (CO2) into deep reservoirs. The simulator TOUGH2 was used to model the injection of 100 kg/s of CO2 for 10 years into an aquifer 3 km deep with the object of evaluating the long-term storage prospects for this gas. Depending on the permeability structure above the injection point, some gas may escape to the surface. In the most favourable case, all of the gas dissolves into the water, and the resulting dense fluid settles in the aquifer over several thousand years. Consequently, underground storage provides a promising sink for reducing CO2 emissions to the atmosphere.

113 citations


Journal ArticleDOI
TL;DR: In this paper, the effects of gravity are accounted for in a separate correction step, and the authors present a streamline method which includes gravity effects by operator splitting, in which the flow equations are treated by an IMPES method, where the pressure equation is solved by a standard finite element method.
Abstract: In this paper we consider porous media flow without capillary effects. We present a streamline method which includes gravity effects by operator splitting. The flow equations are treated by an IMPES method, where the pressure equation is solved by a (standard) finite element method. The saturation equation is solved by utilizing a front tracking method along streamlines of the pressure field. The effects of gravity are accounted for in a separate correction step. This is the first time streamlines are combined with gravity for three-dimensional (3D) simulations, and the method proves favourable compared to standard splitting methods based on fractional steps. By our splitting we can take advantage of very accurate and efficient 1D methods. The ideas have been implemented and tested in a full field simulator. In that context, both accuracy and CPU efficiency have tested favourably.

100 citations


Journal ArticleDOI
TL;DR: In this article, a three-phase, two-dimensional network model based on the pore-scale fluid distributions and displacement mechanisms reported by Oren et al. and which accounts for flow through both wetting and intermediate fluid films is presented.
Abstract: Drainage displacements in three-phase flow under strongly wetting conditions are completely described by a simple generalisation of well understood two-phase drainage mechanisms. As in two-phase flow, the sequence of throat invasions in three-phase flow is determined by fluid connectivity and threshold capillary pressure for the invading interface. Flow through wetting and intermediate spreading films is important in determining fluid recoveries and the progress of the displacement in three-phase flow. Viscous pressure drops associated with flow through films give rise to multiple filling and emptying of pores. A three-phase, two-dimensional network model based on the pore-scale fluid distributions and displacement mechanisms reported by Oren et al. and which accounts for flow through both wetting and intermediate fluid films is shown to correctly predict all the important characteristics of three-phase flow observed in glass micromodel experiments.

94 citations


Journal ArticleDOI
TL;DR: In this article, the initial stage of drying of saturated concrete cylinders was investigated and the experimental results indicated that drying of concrete becomes diffusion controlled when the average moisture content decreases below 70 to 80% of the initial saturation.
Abstract: Moisture content changes during drying were investigated in the present work. Particular emphasis was placed on the initial stage of drying of saturated concrete, where moisture contents are high. For this stage of drying, experimental data are lacking, and no comprehensive theory exists to describe it. The present investigation was performed experimentally and numerically for drying of cylinders with one exposed end, made of normal weight and lightweight concrete with varying water to cement ratio (w/c). The gravimetric technique was employed to obtain the spatial distribution of moisture content. The experimental results obtained indicate that drying of concrete becomes diffusion controlled when the average moisture content decreases below 70 to 80% of the initial saturation. Typical drying rates are in the order of magnitude of 0.18 kg/day/m2 and 0.02 kg/day/m2 for the first and the second stage of drying, respectively. The lightweight concrete cylinders as compared to those made of normal weight concrete exhibited higher levels of moisture content throughout the process. At high w/c ratios, the moisture profiles for both types of cylinders, as expected, show steeper changes with time. Large, constant drying rates were observed both experimentally and numerically in the beginning of the drying. The numerical model developed is based on a generalized mathematical formulation for mass and heat transfer in porous media, and its predictions are in agreement with the experimental data within the uncertainty range of the input data.

74 citations


Journal ArticleDOI
TL;DR: In this paper, three different approaches, which lead to three different non-Fickian equations with a transient character, are discussed and their primary features and differences are highlighted and a rigorous derivation of various dispersion relationships valid under different conditions.
Abstract: The Fickian dispersion equation is the basic relationship used to describe the nonconvective mass flux of a solute in a porous medium. This equation prescribes a linear relationship between the dispersive mass flux and the concentration gradient. An important characteristic of the Fickian relationship is that it is independent of the history of dispersion (e.g. the time rate of change of the dispersion flux). Also, the dispersivities are supposed to be medium constants and invariant with temporal and spatial scales of observation. It is believed that in general these restrictions do not hold. A number of authors have proposed various alternative relationships. For example, differential equations have been employed that prescribe a relationship between the dispersion flux and its time and space derivatives. Also, stochastic theories result in integro-differential equations in which dispersion tensor grow asymptotically with time or distance. In this work, three different approaches, which lead to three different non-Fickian equations with a transient character, are discussed and their primary features and differences are highlighted. It is shown that an effective dispersion tensor defined in the framework of the transient non-Fickian theory, grows asymptotically with time and distance; a result which also follows from stochastic theories. Next, principles of continuum mechanics are employed to provide a solid theoretical basis for the non-Fickian transient dispersion theory. The equation of motion of a solute in a porous medium is used to provide a rigorous derivation of various dispersion relationships valid under different conditions. Under various simplifying assumptions, the generalized theory is found to agree with the conventional Fickian theory as well as several other non-Fickian relationships found in the literature. Moreover, it is shown that for nonconservative solutes, the traditional dispersion tensor is affected by the rate of mass exchange of the solute.

66 citations


Journal ArticleDOI
TL;DR: In this article, the authors defined the transport coefficients in coupled equations of two-phase flow are defined if the pressure gradient in one of the two flowing fluids is equal to zero.
Abstract: The transport coefficients in the coupled equations of two-phase flow are defined if the pressure gradient in one of the two flowing fluids is equal to zero. This definition has been used in experiments with oil and water in a sandpack and the four transport coefficients have been measured over wide water saturation ranges. The values of the cross coefficients were found to be significant as they ranged from 10 to 35% of the value of the effective permeability to water and from 5 to 15% of the effective permeability to oil, respectively.

65 citations


Journal ArticleDOI
TL;DR: In this article, the closure problem for two-phase flow in homogeneous porous media is transformed to a pair of Stokes-like boundary value problems in terms of "pressures" and "velocities".
Abstract: In this paper we continue previous studies of the closure problem for two-phase flow in homogeneous porous media, and we show how the closure problem can be transformed to a pair of Stokes-like boundary-value problems in terms of ‘pressures’ that have units of length and ‘velocities’ that have units of length squared. These are essentially geometrical boundary value problems that are used to calculate the four permeability tensors that appear in the volume averaged Stokes' equations. To determine the geometry associated with the closure problem, one needs to solve the physical problem; however, the closure problem can be solved using the same algorithm used to solve the physical problem, thus the entire procedure can be accomplished with a single numerical code.

Journal ArticleDOI
TL;DR: In this paper, the authors derived a Forchheimer-type equation for two-phase flow through an isotropic porous medium using hybrid mixture theory, which consists of classical mixture theory applied to a multiphase system with volume averaged equations.
Abstract: In this paper, we derive a Forchheimer-type equation for two-phase flow through an isotropic porous medium using hybrid mixture theory. Hybrid mixture theory consists of classical mixture theory applied to a multiphase system with volume averaged equations. It applies to media in which the characteristic length of each phase is "small" relative to the extent of the mixture. The derivation of a Forchheimer equation for single phase flow has been obtained elsewhere. These results are extended to include multiphase swelling materials which have non-negligible interfacial thermodynamic properties.

Journal ArticleDOI
TL;DR: In this paper, the authors deduced from both numerical and experimental studies a method for estimating pertinent relations for these key parameters for most materials that consist of water and humid air, and as a result, arbitrary functions are used in the drying codes.
Abstract: In the modelling of heat, mass and momentum transfer phenomena which occur in a capillary porous medium during drying, the liquid and gas flows are usually described by the generalised Darcy laws. Nevertheless, the question of how to determine experimentally the relative permeability relations remains unanswered for most materials that consist of water and humid air, and as a result, arbitrary functions are used in the drying codes. In this paper, the emphasis is on deducing from both numerical and experimental studies a method for estimating pertinent relations for these key parameters. In the first part, the sensitivity of liquid velocity and, consequently, of drying kinetics in the variation of the relative permeabilities is investigated numerically by testing various forms. It is concluded that in order to predict a realistic liquid velocity behaviour, relative permeabilities can be linked to a measurable quantity: the capillary pressure. An estimation technique, based on simulations coupled with experimental measurements of capillary pressure, together with moisture content kinetics obtained for low or middle temperature convective drying, is deduced. In the second part, the proposed methodology is applied to pine wood. It is shown that the obtained relations provide closer representation of physical reality than those commonly used.

Journal ArticleDOI
TL;DR: In this article, the authors analyze the flow of a Maxwell fluid in a rigid porous medium using the method of volume averaging and present the local volume averaged momentum equation which contains Darcy-scale elastic effects and undetermined integrals of the spatial deviations of the pressure and velocity.
Abstract: In this paper we analyze the flow of a Maxwell fluid in a rigid porous medium using the method of volume averaging. We first present the local volume averaged momentum equation which contains Darcy-scale elastic effects and undetermined integrals of the spatial deviations of the pressure and velocity. A closure problem is developed in order to determine the spatial deviations and thus obtain a closed form of the momentum equation that contains a time-dependent permeability tensor. To gain some insight into the effects of elasticity on the dynamics of flow in porous media, the entire problem is transformed to the frequency domain through a temporal Fourier transform. This leads to a dynamic generalization of Darcy's law. Analytical results are provided for the case in which the porous medium is modeled as a bundle of capillary tubes, and a scheme is presented to solve the transformed closure problem for a general microstructure.

Journal ArticleDOI
TL;DR: In this paper, the authors measured the dilution of solute in two-dimensionalally periodic heterogeneous porous media by numerically simulating advection-dispersion, over a characteristic variance residence time (VRT).
Abstract: Dilution of solute in two-dimensionally periodic heterogeneous porous media is assessed by numerically simulating advection-dispersion. The concentration fluctuations, created by advective heterogeneity, are destroyed by local dispersion, over a characteristic variance residence time (VRT). For an impulse introduction of solute, initially, plumes become increasingly irregular with time—the coefficient of variation (CV) of concentration grows with time. A priori, the spatial second moment and mean concentrations are insufficient measures of dilution, because concentration fluctuations can be large. At large times (t > VRT) the relative concentration fluctuations weaken—the concentration CV was observed to slowly decrease with time. At the center of mass the general trend of the decreasing CV follows VRT/t (predicted by Kapoor and Gelhar). The VRT is found to be an increasing function of the log hydraulic conductivity microscale. In employing effective dispersion coefficents to model the mean concentration, it needs to be recognized that excursions of concentrations around the mean are singularly determined by local dispersion.

Journal ArticleDOI
TL;DR: In this article, the porosity variations induced by temperature gradients in unsaturated saline media were investigated and it is known that temperature variations cause humidity variations which lead to liquid flow towards and vapour flow away from the hot source.
Abstract: We present a theoretical-numerical investigation of porosity variations induced by temperature gradients in unsaturated saline media It is known that temperature variations cause humidity variations which lead to liquid flow towards and vapour flow away from the hot source When this phenomenon occurs in saline media, the liquid is salt saturated brine, so that evaporation causes salt precipitation and an ensuing porosity reduction Condensation of water causes salt dissolution and porosity increase This process may be important in the case of heat generating waste because it suggests that selfsealing may take place near the waste On the other hand, salt mass balance will lead to porosity increases in other zones

Journal ArticleDOI
TL;DR: In this article, the results of a one-dimensional experimental investigation of contaminant transport in heterogeneous porous media are presented, and the results show that the mixing between miscible fluids was affected by transitions in the system parameters, before the transitions were encountered by the mixing zone.
Abstract: This work presents the results of a one-dimensional experimental investigation of contaminant transport in heterogeneous porous media. The usual transport equations fail to adequately predict dispersion in such systems, and new theories to account for the distinctions have not yet been examined experimentally. We use a one-dimensional porous media which is heterogeneous on the scale of observation to determine if the phenomena predicted by the new theories are observable. The experimental media are constructed from distinct layers of spherical glass beads packed into cylindrical columns of Lucite. Flow was in the direction perpendicular to the layers. Dispersion was measured by recording the concentration of a chloride tracer as a function of time and position. The scale of measurement was finer than the scale of the heterogeneity. The results show that the mixing between miscible fluids was affected by transitions in the system parameters, before the transitions were encountered by the mixing zone. This newly observed phenomenon has been interpreted as a nonlocal effect, and it begins to verify the new predictive theories.

Journal ArticleDOI
TL;DR: In this paper, the authors presented a diffuse approximation for natural convection problems in porous media and compared it with the control volume-based finite element method and showed that the diffuse approximation appears to be fairly attractive.
Abstract: The diffuse approximation is presented and applied to natural convection problems in porous media. A comparison with the control volume-based finite-element method shows that, overall, the diffuse approximation appears to be fairly attractive.

Journal ArticleDOI
TL;DR: In this paper, a theory of wave propagation in fractured porous media is presented based on the double-porosity concept, and macroscopic constitutive relations and mass and momentum balance equations are obtained by volume averaging the microscale balance and constitutive equations and assuming small deformations.
Abstract: A theory of wave propagation in fractured porous media is presented based on the double-porosity concept. The macroscopic constitutive relations and mass and momentum balance equations are obtained by volume averaging the microscale balance and constitutive equations and assuming small deformations. In microscale, the grains are assumed to be linearly elastic and the fluids are Newtonian. Momentum transfer terms are expressed in terms of intrinsic and relative permeabilities assuming the validity of Darcy's law in fractured porous media. The macroscopic constitutive relations of elastic porous media saturated by one or two fluids and saturated fractured porous media can be obtained from the constitutive relations developed in the paper. In the simplest case, the final set of governing equations reduce to Biot's equations containing the same parameters as of Biot and Willis.

Journal ArticleDOI
TL;DR: In this article, the authors developed a theoretical model for the prediction of velocity and pressure drop for the flow of a viscous power law fluid through a bed packed with uniform spherical particles.
Abstract: The development of a theoretical model for the prediction of velocity and pressure drop for the flow of a viscous power law fluid through a bed packed with uniform spherical particles is presented. The model is developed by volume averaging the equation of motion. A porous microstructure model based on a cell model is used. Numerical solution of the resulting equation is effected using a penalty Galerkin finite element method. Experimental pressure drop values for dilute solutions of carboxymethylcellulose flowing in narrow tubes packed with uniformly sized spherical particles are compared to theoretical predictions over a range of operating conditions. Overall agreement between experimental and theoretical values is within 15%. The extra pressure drop due to the presence of the wall is incorporated directly into the model through the application of the no-slip boundary condition at the container wall. The extra pressure drop reaches a maximum of about 10% of the bed pressure drop without wall effect. The wall effect increases as the ratio of tube diameter to particle diameter decreases, as the Reynolds number decreases and as the power law index increases.

Journal ArticleDOI
TL;DR: In this article, the problem of finding effective flow properties when moving from a detailed representation of reservoir geology to a coarse gridded model required for reservoir performance simulation is discussed.
Abstract: In this paper we briefly discuss the background to the problems of finding effective flow properties when moving from a detailed representation of reservoir geology to a coarse gridded model required for reservoir performance simulation. The basic requirements for the upscaled properties are also discussed. We then consider one technique, renormalization, that in recent years has shown promise as an accurate, yet fast, method. The mathematical background of the renormalization approach is examined. A rigorous formalism is developed that allows an explicit calculation of the error terms to be made. In a very simple case use of the correction terms is shown to produce a dramatic improvement in accuracy of the method.

Journal ArticleDOI
TL;DR: The stability and onset of convection in a rotating fluid saturated porous layer subject to a centrifugal body force and placed at an offset distance from the center of rotation is investigated analytically in this paper.
Abstract: The stability and onset of convection in a rotating fluid saturated porous layer subject to a centrifugal body force and placed at an offset distance from the center of rotation is investigated analytically. The marginal stability criterion is established in terms of a critical centrifugal Rayleigh number and a critical wave number for different values of the parameter representing the dimensionless offset distance from the center of rotation. At the limit of an infinite distance from the center of rotation the results are identical to the convection resulting from heating a porous layer from below subject to the gravitational body force. At the other limit, when the parameter controlling the offset distance approaches zero, the results converge to previously found solutions for the convection in a porous layer adjacent to the axis of rotation. The results provide the stability map for all positive values of the parameter controlling the offset distance from the center of rotation, hence bridging the gap between the two extreme limit cases.

Journal ArticleDOI
TL;DR: In this article, the salinity profile, salt precipitation rate, etc., obtained within the framework of a 1-D (vertical) model fail when free convection takes place.
Abstract: Evaporation of groundwater in a region with a shallow water table and small natural replenishment causes accumulation of salts near the ground surface. Water in the upper soil layer becomes denser than in the depth. This is a potentially unstable situation which may result in convective currents. When free convection takes place, estimates of the salinity profile, salt precipitation rate, etc., obtained within the framework of a 1-D (vertical) model fail.

Journal ArticleDOI
TL;DR: In this article, it was shown that for a fractal soil, the soil-water conductivity, K, is given by K = 2D/3 + 2/(3 - D), where D is the fractal dimension.
Abstract: We show that for a fractal soil the soil-water conductivity, K, is given by $$\frac{K}{{K_\varepsilon }} = (\Theta /\varepsilon )^{2D/3 + 2/(3 - D)}$$ where \(K_\varepsilon\) is the saturated conductivity, θ the water content, ɛ its saturated value and D is the fractal dimension obtained from reinterpreting Millington and Quirk's equation for practical values of the porosity ɛ, as $$D = 2 + 3\frac{{\varepsilon ^{4/3} + (1 - \varepsilon )^{2/3} - 1}}{{2\varepsilon ^{4/3} \ln ,{\text{ }}\varepsilon ^{ - 1} + (1 - \varepsilon )^{2/3} \ln (1 - \varepsilon )^{ - 1} }}$$ .

Journal ArticleDOI
TL;DR: In this article, the effect of radiation on mixed convection from a horizontal flat plate in a saturated porous medium is investigated and the conservation equations that govern the problem are reduced to a system of nonlinear ordinary different equations.
Abstract: An analysis is presented to investigate the effect of radiation on mixed convection from a horizontal flat plate in a saturated porous medium. Both a hot surface facing upward and a cold surface facing downward are considered in the analysis. The conservation equations that govern the problem are reduced to a system of nonlinear ordinary different equations. The important parameters of this problem are the radiation parameter R, the buoyancy parameter B, and the freestream to wall temperature ratio T ∞/T w for the case of a hot surface or the wall to freestream to wall temperature T w /T ∞ for the case of a cold surface.

Journal ArticleDOI
TL;DR: In this article, the effect on a compressible Darcy flow by inertia and Forchheimer terms is studied, and wave solutions are found which exhibit a cut-off frequency and phase shift between pressure and velocity of the gas, with the velocity lagging behind the pressure.
Abstract: The flow of an adiabatic gas through a porous media is treated analytically for steady one- and two-dimensional flows. The effect on a compressible Darcy flow by inertia and Forchheimer terms is studied. Finally, wave solutions are found which exhibit a cut-off frequency and a phase shift between pressure and velocity of the gas, with the velocity lagging behind the pressure.

Journal ArticleDOI
TL;DR: In this article, the influence of moisture concentration and temperature on the formation of drying-induced stresses was investigated on a convectively dried prismatic bar, and the analysis of the drying induced stresses was carried out on the paper.
Abstract: The field of moisture concentration and the field of temperature are the two factors that induce stresses in dried materials The main aim of this paper is to estimate the influence of these two factors on the formation of drying-induced stresses The considerations are based on the model elaborated by the authors and the analysis of the drying-induced stresses is carried out on a convectively dried prismatic bar

Journal ArticleDOI
TL;DR: In this paper, the effects of thermal dispersion and thermal stratification on mixed convection about a vertical surface in a porous medium are studied and the conservation equations that govern the problem are reduced to a system of nonlinear ordinary differential equations.
Abstract: The effects of thermal dispersion and thermal stratification on mixed convection about a vertical surface in a porous medium are studied. The conservation equations that govern the problem are reduced to a system of nonlinear ordinary differential equations. The resulting equations are solved on the basis of the local similarity approximation. The results indicate that both dispersion and stratification effects have considerable influence on the heat transfer rate.

Journal ArticleDOI
TL;DR: In this paper, the effects of fractures on the phase velocity and attenuation coefficient of body waves are numerically investigated for a fractured sandstone saturated by air and water phases, and the existence of four compressional and one rotational waves is shown.
Abstract: A study of body waves in fractured porous media saturated by two fluids is presented. We show the existence of four compressional and one rotational waves. The first and third compressional waves are analogous to the fast and slow compressional waves in Biot's theory. The second compressional wave arises because of fractures, whereas the fourth compressional wave is associated with the pressure difference between the fluid phases in the porous blocks. The effects of fractures on the phase velocity and attenuation coefficient of body waves are numerically investigated for a fractured sandstone saturated by air and water phases. All compressional waves except the first compressional wave are diffusive-type waves, i.e., highly attenuated and do not exist at low frequencies.

Journal ArticleDOI
TL;DR: In this article, the formation damage in porous media by erosion and deposition of solid particles is modeled at a large scale, and four characteristic models with different dominating phenomena at the pore scale are determined.
Abstract: The aim of the paper is to model at a large scale, the formation damage in porous media by erosion and deposition of solid particles. We start from the equations governing the pore-scale processes of erosion, deposition, convection and diffusion. The macroscopic equivalent behaviour is investigated by using a homogenization method. Four characteristic models with different dominating phenomena at the pore scale are determined. The main results are twofold: first dispersion-deposition and dispersion-erosion phenomena are shown at the macroscopic scale for peculiar values of the dimensionless numbers; furthermore, and contrarily to phenomenological models, erosion and deposition generally occur in regions of intense and slow flow, respectively.