scispace - formally typeset
Open AccessJournal ArticleDOI

A constrained A* approach towards optimal path planning for an unmanned surface vehicle in a maritime environment containing dynamic obstacles and ocean currents

TLDR
Even after embargo period expires, authors' right to distribute as green open access is conditional on the green openAccess version including a DOI link, and on thegreen open access version being distributed under the Creative Commons CC-BY-NC-ND licence.
About: 
This article is published in Ocean Engineering.The article was published on 2018-12-01 and is currently open access. It has received 169 citations till now.

read more

Citations
More filters

Optimal AUV pathplanning forextended missions incomplex, fast-flowing estuarine environments.

TL;DR: The possibilities for a novel type of AUV mission deployment in fast flowing tidal river regions which experience bi-directional current flow are examined, enabling extended monitoring of otherwise energy-exhausting, fast flow environments.
Journal ArticleDOI

Fuzzy logic based dynamic decision-making system for intelligent navigation strategy within inland traffic separation schemes

TL;DR: From the results of both scenarios for overtaking and following, it illustrates that the timing is significant for strategy selection and should well consider the complex situation and ship behaviours, moreover, the proposed approach can be used for intelligent strategy selection.
Journal ArticleDOI

Learn to Navigate: Cooperative Path Planning for Unmanned Surface Vehicles Using Deep Reinforcement Learning

TL;DR: This work investigates the application of deep reinforcement learning algorithms for USV and USV formation path planning with specific focus on a reliable obstacle avoidance in constrained maritime environments.
Journal ArticleDOI

A path planning approach based on multi-direction A* algorithm for ships navigating within wind farm waters

TL;DR: Simulation results indicate that the trajectory from 20-direction A* algorithm has similar path length with real cases while enhancing navigation safety to a large degree and making a trade-off between computation complexity and efficiency.
Journal ArticleDOI

Global path planning and multi-objective path control for unmanned surface vehicle based on modified particle swarm optimization (PSO) algorithm

TL;DR: Simulation experiments validate that the proposed hierarchical navigation method, CSPSO algorithm, and collision avoidance rules are effective and justifiable.
References
More filters
Journal ArticleDOI

Motion Planning in Dynamic Environments Using Velocity Obstacles

TL;DR: This paper presents a method for robot motion planning in dynamic environments that consists of selecting avoidance maneuvers to avoid static and moving obstacles in the velocity space, based on the rental positions and velocities of the robot and obstacles.

Heuristic Motion Planning in Dynamic Environments Using Velocity Obstacles

P. Fiorini, +1 more
TL;DR: In this paper, the authors present heuristic methods for motion planning in dynamic environments, based on the concept of Velocity Obstacle (VO), which is a heuristic method for motion prediction in a dynamic environment.
Book ChapterDOI

Optimal and efficient path planning for partially-known environments

TL;DR: A new algorithm, D*, is introduced, capable of planning paths in unknown, partially known, and changing environments in an efficient, optimal, and complete manner.
Proceedings ArticleDOI

D*lite

TL;DR: This paper applies Lifelong Planning A* to robot navigation inunknown terrain, including goal-directed navigation in unknown terrain and mapping of unknown terrain, and develops the resulting D* Lite algorithm, which implements the same behavior as Stentz' Focussed Dynamic A* but is algorithmically different.
Journal ArticleDOI

Theta*: any-angle path planning on grids

TL;DR: This work presents Theta*, a variant of A*, that propagates informati on along grid edges without constraining the paths to grid edges, and shows experimentally that Theta* finds shorter and more realistic looking paths than either of these existing techniques.
Related Papers (5)
Frequently Asked Questions (2)
Q1. What are the contributions in "A constrained a* approach towards optimal path planning for an unmanned surface vehicle in a maritime environment containing dynamic obstacles and ocean currents" ?

Unlike existing work on USV navigation using graph based methods, this study extends the implementation of the proposed A * approach in an environment cluttered with static and moving obstacles and different current intensities. The study also examines the effect of headwind and tailwind currents moving in clockwise and anti clockwise direction respectively of different intensities on optimal waypoints in a partially dynamic environment. 

The approach is found to be robust, computationally efficient and can be extended for real time path planning of USVs in confined water. In future work, it is planned to extend the work in development of a path follower approach working in conjugation with proposed approach for a reactive path planning in scenarios involving close encounters. A challenging 28 extension of the current work lies in fact of finding a heuristic cost function which can take into account rules of the COLREGs without compromising the optimality and computational effort required to find a feasible trajectory.Â