scispace - formally typeset
Open AccessJournal ArticleDOI

A cortical neural prosthesis for restoring and enhancing memory

Reads0
Chats0
TLDR
These integrated experimental-modeling studies show for the first time that, with sufficient information about the neural coding of memories, a neural prosthesis capable of real-time diagnosis and manipulation of the encoding process can restore and even enhance cognitive, mnemonic processes.
Abstract
A primary objective in developing a neural prosthesis is to replace neural circuitry in the brain that no longer functions appropriately. Such a goal requires artificial reconstruction of neuron-to-neuron connections in a way that can be recognized by the remaining normal circuitry, and that promotes appropriate interaction. In this study, the application of a specially designed neural prosthesis using a multi-input/multi-output (MIMO) nonlinear model is demonstrated by using trains of electrical stimulation pulses to substitute for MIMO model derived ensemble firing patterns. Ensembles of CA3 and CA1 hippocampal neurons, recorded from rats performing a delayed-nonmatch-to-sample (DNMS) memory task, exhibited successful encoding of trial-specific sample lever information in the form of different spatiotemporal firing patterns. MIMO patterns, identified online and in real-time, were employed within a closed-loop behavioral paradigm. Results showed that the model was able to predict successful performance on the same trial. Also, MIMO model-derived patterns, delivered as electrical stimulation to the same electrodes, improved performance under normal testing conditions and, more importantly, were capable of recovering performance when delivered to animals with ensemble hippocampal activity compromised by pharmacologic blockade of synaptic transmission. These integrated experimental-modeling studies show for the first time that, with sufficient information about the neural coding of memories, a neural prosthesis capable of real-time diagnosis and manipulation of the encoding process can restore and even enhance cognitive, mnemonic processes.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI

Development a cross-loop during adaptive stimulation of hippocampal neural networks by an artificial neural network

TL;DR: This study is devoted to the development of neuromorphic system for neuroprosthetics problems because of the use of a memristive structure and its ability to change and maintain internal resistance when voltage is applied and turned off.
Proceedings ArticleDOI

Closed-loop electrophysiology: Past, present and future perspectives and applications

TL;DR: This review summarizes the main results obtained with a hybrid neurorobotic platform that was developed in the past to perform closed-loop experiments and uses cultured neuronal networks kept alive over Micro Electrode Arrays to minimize the complexity of the biological network.
Journal ArticleDOI

Brain Co-processors: Using AI to Restore and Augment Brain Function

TL;DR: In this paper , a new framework for developing brain co-processors based on artificial neural networks, deep learning, and reinforcement learning is described, which allows joint optimization of cost functions with the nervous system to achieve desired behaviors.
References
More filters
Book

The rat nervous system

TL;DR: The present work focuses on the development of brain Stem Systems Involved in the Blink Reflex, Feeding Mechanisms, and Micturition of the Spinal Cord, which are involved in the selection of somatic and emotional components of the Motor System in Mammals.
Journal ArticleDOI

Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus.

TL;DR: Results indicate that the synaptic receptor in the Schaffer collateral‐commissural pathway may be of the kainate or quisqualate type and although NMA receptors do not appear to be involved in normal synaptic transmission in this pathway they may play a role in synaptic plasticity.
Journal ArticleDOI

Cortical control of a prosthetic arm for self-feeding

TL;DR: A system that permits embodied prosthetic control is described and monkeys (Macaca mulatta) use their motor cortical activity to control a mechanized arm replica in a self-feeding task, and this demonstration of multi-degree-of-freedom embodied prosthetics control paves the way towards the development of dexterous prosthetic devices that could ultimately achieve arm and hand function at a near-natural level.
Journal ArticleDOI

A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects.

TL;DR: A statistical framework based on the point process likelihood function to relate a neuron's spiking probability to three typical covariates: the neuron's own spiking history, concurrent ensemble activity, and extrinsic covariates such as stimuli or behavior.
Journal ArticleDOI

Brain-computer interfaces in neurological rehabilitation.

TL;DR: Non-invasive, electroencephalogram (EEG)-based brain-computer interface technologies can be used to control a computer cursor or a limb orthosis, for word processing and accessing the internet, and for other functions such as environmental control or entertainment.
Related Papers (5)