scispace - formally typeset
Journal ArticleDOI

A Douglas–Rachford Splitting Approach to Nonsmooth Convex Variational Signal Recovery

Patrick L. Combettes, +1 more
- 01 Dec 2007 - 
- Vol. 1, Iss: 4, pp 564-574
TLDR
A decomposition method based on the Douglas-Rachford algorithm for monotone operator-splitting for signal recovery problems and applications to non-Gaussian image denoising in a tight frame are demonstrated.
Abstract
Under consideration is the large body of signal recovery problems that can be formulated as the problem of minimizing the sum of two (not necessarily smooth) lower semicontinuous convex functions in a real Hilbert space. This generic problem is analyzed and a decomposition method is proposed to solve it. The convergence of the method, which is based on the Douglas-Rachford algorithm for monotone operator-splitting, is obtained under general conditions. Applications to non-Gaussian image denoising in a tight frame are also demonstrated.

read more

Citations
More filters
Book

Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers

TL;DR: It is argued that the alternating direction method of multipliers is well suited to distributed convex optimization, and in particular to large-scale problems arising in statistics, machine learning, and related areas.
Book

Proximal Algorithms

TL;DR: The many different interpretations of proximal operators and algorithms are discussed, their connections to many other topics in optimization and applied mathematics are described, some popular algorithms are surveyed, and a large number of examples of proxiesimal operators that commonly arise in practice are provided.
Posted Content

Proximal Splitting Methods in Signal Processing

Abstract: The proximity operator of a convex function is a natural extension of the notion of a projection operator onto a convex set. This tool, which plays a central role in the analysis and the numerical solution of convex optimization problems, has recently been introduced in the arena of signal processing, where it has become increasingly important. In this paper, we review the basic properties of proximity operators which are relevant to signal processing and present optimization methods based on these operators. These proximal splitting methods are shown to capture and extend several well-known algorithms in a unifying framework. Applications of proximal methods in signal recovery and synthesis are discussed.
Book ChapterDOI

Proximal Splitting Methods in Signal Processing

TL;DR: The basic properties of proximity operators which are relevant to signal processing and optimization methods based on these operators are reviewed and proximal splitting methods are shown to capture and extend several well-known algorithms in a unifying framework.
References
More filters
Book

Ten lectures on wavelets

TL;DR: This paper presents a meta-analyses of the wavelet transforms of Coxeter’s inequality and its applications to multiresolutional analysis and orthonormal bases.
Journal ArticleDOI

Ten Lectures on Wavelets

TL;DR: In this article, the regularity of compactly supported wavelets and symmetry of wavelet bases are discussed. But the authors focus on the orthonormal bases of wavelets, rather than the continuous wavelet transform.
Journal ArticleDOI

Matrix Iterative Analysis

Related Papers (5)