scispace - formally typeset
Journal ArticleDOI

A general classification of three-dimensional flow fields

Min S Chong, +2 more
- 01 May 1990 - 
- Vol. 2, Iss: 5, pp 765-777
Reads0
Chats0
TLDR
In this paper, the geometry of solution trajectories for three first-order coupled linear differential equations can be related and classified using three matrix invariants for elementary three-dimensional flow patterns defined by instantaneous streamlines for flow at and away from no slip boundaries for both compressible and incompressible flow.
Abstract
The geometry of solution trajectories for three first‐order coupled linear differential equations can be related and classified using three matrix invariants. This provides a generalized approach to the classification of elementary three‐dimensional flow patterns defined by instantaneous streamlines for flow at and away from no‐slip boundaries for both compressible and incompressible flow. Although the attention of this paper is on the velocity field and its associated deformation tensor, the results are valid for any smooth three‐dimensional vector field. For example, there may be situations where it is appropriate to work in terms of the vorticity field or pressure gradient field. In any case, it is expected that the results presented here will be of use in the interpretation of complex flow field data.

read more

Citations
More filters
Journal ArticleDOI

3D numerical simulation of volcanic eruption clouds during the 2011 Shinmoe-dake eruptions

TL;DR: In this article, the authors present simulations of the development of volcanic plumes during the 2011 eruptions of the Kirishima-Shinmoe-dake volcano, Japan, using a new three-dimensional (3D) numerical model that calculates eruption cloud dynamics and the wind-borne transport of volcanic ash.
Journal ArticleDOI

Investigation of turbulence structures in a drag-reduced turbulent channel flow with surfactant additive by stereoscopic particle image velocimetry

TL;DR: In this article, the authors employed stereoscopic particle image velocimetry (PIV) to investigate the characteristics of turbulence structures in a drag-reduced turbulent channel flow with addition of surfactant.
Journal ArticleDOI

Multi-scale geometric analysis of Lagrangian structures in isotropic turbulence

TL;DR: In this paper, a particle backward-tracking method was applied to obtain the Lagrangian scalar field φ governed by the pure advection equation in the Eulerian form t φ + u • ∇φ = 0.
Journal ArticleDOI

Experimental investigation of cross flow mixing in a randomly packed bed and streamwise vortex characteristics using particle image velocimetry and proper orthogonal decomposition analysis

TL;DR: In this paper, the velocity fields at several regions of the cross-flow plane located in the vicinity of the wall and in the pores between spheres were obtained by applying the matched-index-of-refraction and time-resolved particle image velocimetry (TR-PIV) techniques for Reynolds numbers ranging from 700 to 1700.
Book ChapterDOI

17 – Topological Methods for Flow Visualization

TL;DR: This chapter introduces to the mathematical foundations of the topological approach to flow visualization along with a survey of existing techniques in this domain.
References
More filters
Book

Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields

TL;DR: In this article, the authors introduce differential equations and dynamical systems, including hyperbolic sets, Sympolic Dynamics, and Strange Attractors, and global bifurcations.

A Reflection on Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields

TL;DR: In this paper, the authors introduce differential equations and dynamical systems, including hyperbolic sets, Sympolic Dynamics, and Strange Attractors, and global bifurcations.
Book

Differential Equations, Dynamical Systems, and Linear Algebra

TL;DR: In this article, the structure theory of linear operators on finite-dimensional vector spaces has been studied and a self-contained treatment of that subject is given, along with a discussion of the relations between dynamical systems and certain fields outside pure mathematics.
Journal ArticleDOI

Direct simulation of a turbulent boundary layer up to R sub theta = 1410

TL;DR: In this paper, the turbulent boundary layer on a flat plate, with zero pressure gradient, is simulated numerically at four stations between R sub theta = 225 and R sub tta = 1410.
Related Papers (5)