scispace - formally typeset
Journal ArticleDOI

A Generic Intelligent Bearing Fault Diagnosis System Using Compact Adaptive 1D CNN Classifier

TLDR
Effectiveness and feasibility of the 1D CNN based fault diagnosis method is validated by applying it to two commonly used benchmark real vibration data sets and comparing the results with the other competing intelligent fault diagnosis methods.
Abstract
Timely and accurate bearing fault detection and diagnosis is important for reliable and safe operation of industrial systems. In this study, performance of a generic real-time induction bearing fault diagnosis system employing compact adaptive 1D Convolutional Neural Network (CNN) classifier is extensively studied. In the literature, although many studies have developed highly accurate algorithms for detecting bearing faults, their results have generally been limited to relatively small train/test data sets. As opposed to conventional intelligent fault diagnosis systems that usually encapsulate feature extraction, feature selection and classification as distinct blocks, the proposed system takes directly raw time-series sensor data as input and it can efficiently learn optimal features with the proper training. The main advantages of the 1D CNN based approach are 1) its compact architecture configuration (rather than the complex deep architectures) which performs only 1D convolutions making it suitable for real-time fault detection and monitoring, 2) its cost effective and practical real-time hardware implementation, 3) its ability to work without any pre-determined transformation (such as FFT or DWT), hand-crafted feature extraction and feature selection, and 4) its capability to provide efficient training of the classifier with limited size of training data set and limited number of BP iterations. Effectiveness and feasibility of the 1D CNN based fault diagnosis method is validated by applying it to two commonly used benchmark real vibration data sets and comparing the results with the other competing intelligent fault diagnosis methods.

read more

Citations
More filters
Journal ArticleDOI

Applications of machine learning to machine fault diagnosis: A review and roadmap

TL;DR: A review and roadmap to systematically cover the development of IFD following the progress of machine learning theories and offer a future perspective is presented.
Journal ArticleDOI

1D convolutional neural networks and applications: A survey

TL;DR: This paper presents a comprehensive review of the general architecture and principals of 1D CNNs along with their major engineering applications, especially focused on the recent progress in this field.
Posted Content

1D Convolutional Neural Networks and Applications: A Survey

TL;DR: A comprehensive review of the general architecture and principals of 1D CNNs along with their major engineering applications, especially focused on the recent progress in this field, is presented in this paper, where the benchmark datasets and the principal 1D convolutional neural network software used in those applications are also publically shared in a dedicated website.
Journal ArticleDOI

A comprehensive review on convolutional neural network in machine fault diagnosis

TL;DR: This work attempts to review and summarize the development of the Convolutional Network based Fault Diagnosis (CNFD) approaches comprehensively, and points out the characteristics of current development, facing challenges and future trends.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Journal ArticleDOI

Receptive fields of single neurones in the cat's striate cortex

TL;DR: The present investigation, made in acute preparations, includes a study of receptive fields of cells in the cat's striate cortex, which resembled retinal ganglion-cell receptive fields, but the shape and arrangement of excitatory and inhibitory areas differed strikingly from the concentric pattern found in retinalganglion cells.
Journal ArticleDOI

A Survey of Fault Diagnosis and Fault-Tolerant Techniques—Part I: Fault Diagnosis With Model-Based and Signal-Based Approaches

TL;DR: The three-part survey paper aims to give a comprehensive review of real-time fault diagnosis and fault-tolerant control, with particular attention on the results reported in the last decade.
Book ChapterDOI

Evaluation of pooling operations in convolutional architectures for object recognition

TL;DR: The aim is to gain insight into different functions by directly comparing them on a fixed architecture for several common object recognition tasks, and empirical results show that a maximum pooling operation significantly outperforms subsampling operations.
Journal ArticleDOI

Real-Time Patient-Specific ECG Classification by 1-D Convolutional Neural Networks

TL;DR: A fast and accurate patient-specific electrocardiogram (ECG) classification and monitoring system that achieves a superior classification performance than most of the state-of-the-art methods for the detection of ventricular ectopic beats and supraventricular ectopy beats.
Related Papers (5)