scispace - formally typeset
Journal ArticleDOI

A mechanism for bypass transition from localized disturbances in wall-bounded shear flows

Reads0
Chats0
TLDR
In this paper, the linear, nonlinear and breakdown stages in the transition of localized disturbances in plane Poiseuille flow are studied by direct numerical simulations and analysis of the linearized Navier-Stokes equations.
Abstract
The linear, nonlinear and breakdown stages in the transition of localized disturbances in plane Poiseuille flow is studied by direct numerical simulations and analysis of the linearized Navier–Stokes equations. Three-dimensionality plays a key role and allows for algebraic growth of the normal vorticity through the linear lift-up mechanism. This growth primarily generates elongated structures in the streamwise direction since it is largest at low streamwise wavenumbers. For finite-amplitude disturbances such structures will be generated essentially independent of the details of the initial disturbance, since the preferred nonlinear interactions transfer energy to low streamwise wavenumbers. The nonlinear interactions also give a decrease in the spanwise scales. For the stronger initial disturbances the streamwise vorticity associated with the slightly inclined streaks was found to roll up into distinct streamwise vortices in the vicinity of which breakdown occurred. The breakdown starts with a local rapid growth of the normal velocity bringing low-speed fluid out from the wall. This phenomenon is similar to the low-velocity spikes previously observed in transition experiments. Soon thereafter a small turbulent spot is formed. This scenario represents a bypass of the regular Tollmien–Schlichting, secondary instability process. The simulations have been carried out with a sufficient spatial resolution to ensure an accurate description of all stages of the breakdown and spot formation processes. The generality of the observed processes is substantiated by use of different types of initial disturbances and by Blasius boundary-layer simulations. The present results point in the direction of universality of the observed transition mechanisms for localized disturbances in wall-bounded shear flows.

read more

Citations
More filters
Journal ArticleDOI

Hydrodynamic Stability Without Eigenvalues

TL;DR: A reconciliation of findings with the traditional analysis is presented based on the "pseudospectra" of the linearized problem, which imply that small perturbations to the smooth flow may be amplified by factors on the order of 105 by a linear mechanism even though all the eigenmodes decay monotonically.
Journal ArticleDOI

Energy growth in viscous channel flows

TL;DR: In this paper, it has been shown that there can be substantial transient growth in the energy of small perturbations to plane Poiseuille and Couette flows if the Reynolds number is below the critical value predicted by linear stability analysis.
Journal ArticleDOI

Optimal disturbances and bypass transition in boundary layers

TL;DR: In this article, the authors used the steady boundary-layer approximation to calculate the upstream disturbances experiencing maximum spatial energy growth, which are numerically calculated using techniques commonly employed when solving optimal-control problems for distributed parameter systems.
Journal ArticleDOI

Boundary-layer receptivity to freestream disturbances

TL;DR: The boundary-layer receptivity to external acoustic and vortical disturbances is reviewed in this article. But, the authors do not consider the effects of external acoustic or vortic disturbances on the boundary layer.
Journal ArticleDOI

Reynolds number independent instability of the boundary layer over a flat surface : optimal perturbations

TL;DR: In this article, the dependence on initial conditions of the three-dimensional algebraic spatial instability of the Blasius boundary layer is examined by a recently developed method of receptivity analysis based on the upstream integration of adjoint equations.
References
More filters
Journal ArticleDOI

Turbulence statistics in fully developed channel flow at low reynolds number

TL;DR: In this article, a direct numerical simulation of a turbulent channel flow is performed, where the unsteady Navier-Stokes equations are solved numerically at a Reynolds number of 3300, based on the mean centerline velocity and channel half-width, with about 4 million grid points.
Journal ArticleDOI

Accurate solution of the Orr–Sommerfeld stability equation

TL;DR: In this article, the Orr-Sommerfeld equation is solved numerically using expansions in Chebyshev polynomials and the QR matrix eigenvalue algorithm.
Journal ArticleDOI

Three‐dimensional optimal perturbations in viscous shear flow

TL;DR: In this paper, a complete set of perturbations, ordered by energy growth, is found using variational methods. But the optimal perturbation is not of modal form, and those which grow the most resemble streamwise vortices, which divert the mean flow energy into streaks of streamwise velocity and enable the energy of the perturbance to grow by as much as three orders of magnitude.
Journal ArticleDOI

The three-dimensional nature of boundary-layer instability

TL;DR: In this article, an experimental investigation is described, in which principal emphasis is given to revealing the nature of the motions in the non-linear range of boundary-layer instability and the onset of turbulence, and it is demonstrated that the actual breakdown of the wave motion into turbulence is a consequence of a new instability which arises in the aforementioned three-dimensional wave motion.
Journal ArticleDOI

A note on an algebraic instability of inviscid parallel shear flows

TL;DR: In this paper, it was shown that all parallel inviscid shear flows of constant density are unstable to a wide class of initial infinitesimal three-dimensional disturbances in the sense that, according to linear theory, the kinetic energy of the disturbance will grow at least as fast as linearly in time.
Related Papers (5)