scispace - formally typeset
Journal ArticleDOI

A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability.

TLDR
The Cornell Net Carbohydrate and Protein System has a submodel that predicts rates of feedstuff degradation in the rumen, the passage of undegraded feed to the lower gut, and the amount of ME and protein that is available to the animal.
Abstract
The Cornell Net Carbohydrate and Protein System (CNCPS) has a submodel that predicts rates of feedstuff degradation in the rumen, the passage of undegraded feed to the lower gut, and the amount of ME and protein that is available to the animal. In the CNCPS, structural carbohydrate (SC) and nonstructural carbohydrate (NSC) are estimated from sequential NDF analyses of the feed. Data from the literature are used to predict fractional rates of SC and NSC degradation. Crude protein is partitioned into five fractions. Fraction A is NPN, which is trichloroacetic (TCA) acid-soluble N. Unavailable or protein bound to cell wall (Fraction C) is derived from acid detergent insoluble nitrogen (ADIP), and slowly degraded true protein (Fraction B3) is neutral detergent insoluble nitrogen (NDIP) minus Fraction C. Rapidly degraded true protein (Fraction B1) is TCA-precipitable protein from the buffer-soluble protein minus NPN. True protein with an intermediate degradation rate (Fraction B2) is the remaining N. Protein degradation rates are estimated by an in vitro procedure that uses Streptomyces griseus protease, and a curve-peeling technique is used to identify rates for each fraction. The amount of carbohydrate or N that is digested in the rumen is determined by the relative rates of degradation and passage. Ruminal passage rates are a function of DMI, particle size, bulk density, and the type of feed that is consumed (e.g., forage vs cereal grain).

read more

Citations
More filters
Journal ArticleDOI

Precision diet formulation to improve performance and profitability across various climates: Modeling the implications of increasing the formulation frequency of dairy cattle diets.

TL;DR: Economic analysis showed that formulating diets weekly rather than seasonally could improve returns over variable costs by $25,000 per year for a moderate-sized (300-cow) operation and an entire feeding system margin of error of <1% was required.
Journal ArticleDOI

Validating and using the GrassGro decision support tool for a mixed grass/alfalfa pasture in western Canada

TL;DR: Simulation indicated that supplementation at pasture makes the stocking rate of 2.2 steers ha-1 more attractive beca... simulation indicated that all steers could have been finished at pasture.
Journal ArticleDOI

Rate and extent of digestion of the ethanol-soluble and neutral detergent-insoluble fractions of corn grain.

TL;DR: The objectives of this study were to partition corn grain into three digestible fractions and to measure the rate of disappearance of these fractions in vitro, and to routinely analyze the digestion kinetics of the digestible NDF fraction of dried corn grain.
References
More filters
Journal ArticleDOI

Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition.

TL;DR: In addition to NDF, new improved methods for total dietary fiber and nonstarch polysaccharides including pectin and beta-glucans now are available and are also of interest in rumen fermentation.
Journal ArticleDOI

A net carbohydrate and protein system for evaluating cattle diets: I. Ruminal fermentation.

TL;DR: The Cornell Net Carbohydrate and Protein System (CNCPS) has a kinetic submodel that predicts ruminal fermentation and the protein-sparing effect of ionophores is accommodated by decreasing the rate of peptide uptake by 34%.
Related Papers (5)