scispace - formally typeset
Open AccessJournal ArticleDOI

A new stratospheric and tropospheric NO2 retrieval algorithm for nadir-viewing satellite instruments : applications to OMI

Reads0
Chats0
TLDR
In this article, a new algorithm for the retrieval of nitrogen dioxide (NO2) vertical columns from nadir-viewing satellite instruments is described, and the sensitivity of the retrieval to assumptions made in the stratosphere-troposphere separation is discussed and shown to be small, in an absolute sense, for most regions.
Abstract
. We describe a new algorithm for the retrieval of nitrogen dioxide (NO2) vertical columns from nadir-viewing satellite instruments. This algorithm (SP2) is the basis for the Version 2.1 OMI This algorithm (SP2) is the basis for the Version 2.1 Ozone Monitoring Instrument (OMI) NO2 Standard Product and features a novel method for separating the stratospheric and tropospheric columns. NO2 Standard Product and features a novel method for separating the stratospheric and tropospheric columns. The approach estimates the stratospheric NO2 directly from satellite data without using stratospheric chemical transport models or assuming any global zonal wave pattern. Tropospheric NO2 columns are retrieved using air mass factors derived from high-resolution radiative transfer calculations and a monthly climatology of NO2 profile shapes. We also present details of how uncertainties in the retrieved columns are estimated. The sensitivity of the retrieval to assumptions made in the stratosphere–troposphere separation is discussed and shown to be small, in an absolute sense, for most regions. We compare daily and monthly mean global OMI NO2 retrievals using the SP2 algorithm with those of the original Version 1 Standard Product (SP1) and the Dutch DOMINO product. The SP2 retrievals yield significantly smaller summertime tropospheric columns than SP1, particularly in polluted regions, and are more consistent with validation studies. SP2 retrievals are also relatively free of modeling artifacts and negative tropospheric NO2 values. In a reanalysis of an INTEX-B validation study, we show that SP2 largely eliminates an ~20% discrepancy that existed between OMI and independent in situ springtime NO2 SP1 measurements.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Emissions estimation from satellite retrievals: A review of current capability

TL;DR: In this article, a comprehensive literature review and comprising input by both satellite experts and emission inventory specialists, the review identifies several targets that seem promising: large point sources of NOx and SO2, species that are difficult to measure by other means (NH3 and CH4, for example), area sources that cannot easily be quantified by traditional bottom-up methods (such as unconventional oil and gas extraction, shipping, biomass burning, and biogenic sources), and the temporal variation of emissions (seasonal, diurnal, episodic).
Journal ArticleDOI

A space-based, high-resolution view of notable changes in urban NOx pollution around the world (2005–2014)

TL;DR: In this paper, high-resolution NO2 data from the Ozone Monitoring Instrument (OMI) was used to analyze changes in urban NO2 levels around the world from 2005 to 2014, finding complex heterogeneity in the changes.
References
More filters

Atmospheric chemistry and physics: from air pollution to climate change.

TL;DR: In this article, the authors present a model for the chemistry of the Troposphere of the atmosphere and describe the properties of the Atmospheric Aqueous phase of single aerosol particles.
Book

Atmospheric Chemistry and Physics: From Air Pollution to Climate Change

TL;DR: In this paper, the authors present a model for the chemistry of the Troposphere of the atmosphere and describe the properties of the Atmospheric Aqueous phase of single aerosol particles.
Journal ArticleDOI

Global modeling of tropospheric chemistry with assimilated meteorology : Model description and evaluation

TL;DR: The GEOS-CHEM model as mentioned in this paper is a 3D model of tropospheric chemistry driven by assimilated meteorological observations from the Goddard Earth Observing System (GEOS) of the NASA Data Assimilation Office (DAO).
Journal ArticleDOI

SCIAMACHY: Mission Objectives and Measurement Modes

TL;DR: SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric Chartography) is a spectrometer designed to measure sunlight transmitted, reflected, and scattered by the earth's atmosphere or surface in the ultraviolet, visible, and near-infrared wavelength region (240-2380 nm) at moderate spectral resolution (0.2-1.5 nm, λ/Δλ ≈ 1000-10
Journal ArticleDOI

The ozone monitoring instrument

TL;DR: The Ozone Monitoring Instrument is a ultraviolet/visible nadir solar backscatter spectrometer, which provides nearly global coverage in one day with a spatial resolution of 13 km/spl times/24 km and will enable detection of air pollution on urban scale resolution.
Related Papers (5)