scispace - formally typeset
Book ChapterDOI

A review of biochar and its use and function in soil

Reads0
Chats0
TLDR
The potential to sequester carbon as thermally stabilized (charred) biomass using existing organic resource is estimated to be at least 1 Gt/yr − 1 and biochar, defined by its useful application to soil, is expected to provide a benefit from enduring physical and chemical properties.
Abstract
Agricultural activities and soils release greenhouse gases, and additional emissions occur in the conversion of land from other uses. Unlike natural lands, active management offers the possibility to increase terrestrial stores of carbon in various forms in soil. The potential to sequester carbon as thermally stabilized (charred) biomass using existing organic resource is estimated to be at least 1 Gt yr − 1 and “biochar,” defined by its useful application to soil, is expected to provide a benefit from enduring physical and chemical properties. Studies of charcoal tend to suggest stability in the order of 1000 years in the natural environment, and various analytical techniques inform quantification and an understanding of turnover processes. Other types of biochar, such as those produced under zero-oxygen conditions have been studied less, but costs associated with logistics and opportunity costs from diversion from energy or an active form in soil demand certainty and predictability of the agronomic return, especially until eligibility for carbon credits has been established. The mechanisms of biochar function in soil, which appear to be sensitive to the conditions prevailing during its formation or manufacture, are also affected by the material from which it is produced. Proposed mechanisms and some experimental evidence point to added environmental function in the mitigation of diffuse pollution and emissions of trace gases from soil; precluding the possibility of contaminants accumulating in soil from the incorporation of biochar is important to ensure safety and regulatory compliance.

read more

Citations
More filters
Journal ArticleDOI

Potential of sawdust and corn cobs derived biochar to improve soil aggregate stability, water retention, and crop yield of degraded sandy loam soil

TL;DR: In this article, the solid carbon-rich production of pyrolysis biomass could improve the soil structure, which is the main cause of soil degradation; however, biochar could improve soil structure.
Journal ArticleDOI

Biochar applied to consolidated land increased the quality of an acid surface soil and tobacco crop in Southern China

TL;DR: In this paper, a field experiment with 5 corn stover biochar application rates (0, 1, 5, 10, 20 Mg-ha−1) was conducted in an acid soil (Kandiudult soil in US taxonomy) with flue cured tobacco as representative crop.
Journal ArticleDOI

Effect of main solid biomass commodities of patula pine on biochar properties produced under gasification conditions

TL;DR: In this article, an atmospheric reverse-downdraft gasifier was used, setting the air flow at 0.12 kg/m2/s for the samples of biomasses studied.
Journal ArticleDOI

Maximization of fixed carbon content in biochar applied to carbon sequestration

TL;DR: In this paper, a trabalho aimed at maximizar o teor de carbon fixo na producao de biocarvao was presented, with the goal of maximising o rendimento gravimetrico.
Journal ArticleDOI

Banana stem and leaf biochar as an effective adsorbent for cadmium and lead in aqueous solution

TL;DR: In this paper , the adsorption kinetics and isotherms of Pb2+ and Cd2+ in aqueous solutions at different pH by biochar prepared from banana stem and leaf (BSL-BC) at 400 °C were investigated.
References
More filters
Book

HUmus Chemistry Genesis, Composition, Reactions

TL;DR: In this paper, the authors present an analysis of organic matter in soil using NMR Spectroscopy and analytical pyrolysis, showing that organic matter is composed of nitrogen and ammonium.
Journal ArticleDOI

Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change

TL;DR: This article found that corn-based ethanol, instead of producing a 20% savings, nearly doubled greenhouse emissions over 30 years and increased greenhouse gases for 167 years, by using a worldwide agricultural model to estimate emissions from land-use change.
Journal ArticleDOI

Land Clearing and the Biofuel Carbon Debt

TL;DR: Converting rainforests, peatlands, savannas, or grasslands to produce food crop–based biofuels in Brazil, Southeast Asia, and the United States creates a “biofuel carbon debt” by releasing 17 to 420 times more CO2 than the annual greenhouse gas reductions that these biofuel reductions would provide by displacing fossil fuels.
Journal ArticleDOI

Global and regional climate changes due to black carbon

TL;DR: The second most important contribution to anthropogenic climate warming, after carbon dioxide emissions, was made by black carbon emissions as mentioned in this paper, which is an efficient absorbing agent of solar irradiation that is preferentially emitted in the tropics and can form atmospheric brown clouds in mixture with other aerosols.
Journal ArticleDOI

Stabilization Wedges: Solving the Climate Problem for the Next 50 Years with Current Technologies

TL;DR: A portfolio of technologies now exists to meet the world's energy needs over the next 50 years and limit atmospheric CO 2 to a trajectory that avoids a doubling of the preindustrial concentration as mentioned in this paper.
Related Papers (5)