scispace - formally typeset
Open AccessJournal ArticleDOI

A tunable carbon nanotube electromechanical oscillator

Reads0
Chats0
TLDR
The electrical actuation and detection of the guitar-string-like oscillation modes of doubly clamped nanotube oscillators are reported and it is shown that the resonance frequency can be widely tuned and that the devices can be used to transduce very small forces.
Abstract
Nanoelectromechanical systems (NEMS) hold promise for a number of scientific and technological applications. In particular, NEMS oscillators have been proposed for use in ultrasensitive mass detection, radio-frequency signal processing, and as a model system for exploring quantum phenomena in macroscopic systems. Perhaps the ultimate material for these applications is a carbon nanotube. They are the stiffest material known, have low density, ultrasmall cross-sections and can be defect-free. Equally important, a nanotube can act as a transistor and thus may be able to sense its own motion. In spite of this great promise, a room-temperature, self-detecting nanotube oscillator has not been realized, although some progress has been made. Here we report the electrical actuation and detection of the guitar-string-like oscillation modes of doubly clamped nanotube oscillators. We show that the resonance frequency can be widely tuned and that the devices can be used to transduce very small forces.

read more

Citations
More filters
Journal ArticleDOI

Electromechanical Resonators from Graphene Sheets

TL;DR: The thinnest resonator consists of a single suspended layer of atoms and represents the ultimate limit of two-dimensional nanoelectromechanical systems and is demonstrated down to 8 × 10–4 electrons per root hertz.
Journal ArticleDOI

Mechanical properties of suspended graphene sheets

TL;DR: In this article, the Young's modulus of stacks of graphene sheets suspended over photolithographically defined trenches in silicon dioxide was measured using an atomic force microscope, with measured spring constants scaling as expected with the dimensions of the suspended section, ranging from 1to5N∕m.
Journal ArticleDOI

An atomic-resolution nanomechanical mass sensor.

TL;DR: This work demonstrates a room-temperature, carbon-nanotube-based nanomechanical resonator with atomic mass resolution, and observes atomic mass shot noise, analogous to the electronic shot noise measured in many semiconductor experiments.
Journal ArticleDOI

A nanomechanical mass sensor with yoctogram resolution

TL;DR: This unprecedented level of sensitivity allows us to detect adsorption events of naphthalene molecules, and to measure the binding energy of a xenon atom on the nanotube surface, which could have applications in mass spectrometry, magnetometry and surface science.
Journal ArticleDOI

Performance of monolayer graphene nanomechanical resonators with electrical readout

TL;DR: By establishing many of the basic attributes of monolayer graphene resonators, the groundwork for applications of these devices, including high-sensitivity mass detectors, is put in place.
References
More filters
Journal ArticleDOI

Room-temperature transistor based on a single carbon nanotube

TL;DR: In this paper, the fabrication of a three-terminal switching device at the level of a single molecule represents an important step towards molecular electronics and has attracted much interest, particularly because it could lead to new miniaturization strategies in the electronics and computer industry.
Journal ArticleDOI

Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films

TL;DR: An empirical many-body potential-energy expression is developed for hydrocarbons that can model intramolecular chemical bonding in a variety of small hydrocarbon molecules as well as graphite and diamond lattices based on Tersoff's covalent-bonding formalism with additional terms that correct for an inherent overbinding of radicals.
Book

Carbon nanotubes

Journal ArticleDOI

Electrostatic deflections and electromechanical resonances of carbon nanotubes

TL;DR: The methods developed here have been applied to a nanobalance for nanoscopic particles and also to a Kelvin probe based on nanotubes, which indicates a crossover from a uniform elastic mode to an elastic mode that involves wavelike distortions in the nanotube.
Related Papers (5)