scispace - formally typeset
Open AccessProceedings ArticleDOI

Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition

TLDR
A novel class of attacks is defined: attacks that are physically realizable and inconspicuous, and allow an attacker to evade recognition or impersonate another individual, and a systematic method to automatically generate such attacks is developed through printing a pair of eyeglass frames.
Abstract
Machine learning is enabling a myriad innovations, including new algorithms for cancer diagnosis and self-driving cars. The broad use of machine learning makes it important to understand the extent to which machine-learning algorithms are subject to attack, particularly when used in applications where physical security or safety is at risk. In this paper, we focus on facial biometric systems, which are widely used in surveillance and access control. We define and investigate a novel class of attacks: attacks that are physically realizable and inconspicuous, and allow an attacker to evade recognition or impersonate another individual. We develop a systematic method to automatically generate such attacks, which are realized through printing a pair of eyeglass frames. When worn by the attacker whose image is supplied to a state-of-the-art face-recognition algorithm, the eyeglasses allow her to evade being recognized or to impersonate another individual. Our investigation focuses on white-box face-recognition systems, but we also demonstrate how similar techniques can be used in black-box scenarios, as well as to avoid face detection.

read more

Citations
More filters
Posted Content

Towards Deep Learning Models Resistant to Adversarial Attacks

TL;DR: This work studies the adversarial robustness of neural networks through the lens of robust optimization, and suggests the notion of security against a first-order adversary as a natural and broad security guarantee.
Book ChapterDOI

Adversarial examples in the physical world

TL;DR: It is found that a large fraction of adversarial examples are classified incorrectly even when perceived through the camera, which shows that even in physical world scenarios, machine learning systems are vulnerable to adversarialExamples.
Proceedings ArticleDOI

Practical Black-Box Attacks against Machine Learning

TL;DR: This work introduces the first practical demonstration of an attacker controlling a remotely hosted DNN with no such knowledge, and finds that this black-box attack strategy is capable of evading defense strategies previously found to make adversarial example crafting harder.
Posted Content

Adversarial examples in the physical world

TL;DR: This paper showed that even in the physical world scenarios, machine learning systems are vulnerable to adversarial examples, and they demonstrate this by feeding adversarial images obtained from a cell-phone camera to an ImageNet Inception classifier and measuring the classification accuracy of the system.
Proceedings ArticleDOI

Robust Physical-World Attacks on Deep Learning Visual Classification

TL;DR: This work proposes a general attack algorithm, Robust Physical Perturbations (RP2), to generate robust visual adversarial perturbations under different physical conditions and shows that adversarial examples generated using RP2 achieve high targeted misclassification rates against standard-architecture road sign classifiers in the physical world under various environmental conditions, including viewpoints.
References
More filters
Proceedings ArticleDOI

Rapid object detection using a boosted cascade of simple features

TL;DR: A machine learning approach for visual object detection which is capable of processing images extremely rapidly and achieving high detection rates and the introduction of a new image representation called the "integral image" which allows the features used by the detector to be computed very quickly.
Book ChapterDOI

Learning internal representations by error propagation

TL;DR: This chapter contains sections titled: The Problem, The Generalized Delta Rule, Simulation Results, Some Further Generalizations, Conclusion.
Journal ArticleDOI

A fast learning algorithm for deep belief nets

TL;DR: A fast, greedy algorithm is derived that can learn deep, directed belief networks one layer at a time, provided the top two layers form an undirected associative memory.
Journal ArticleDOI

Eigenfaces for recognition

TL;DR: A near-real-time computer system that can locate and track a subject's head, and then recognize the person by comparing characteristics of the face to those of known individuals, and that is easy to implement using a neural network architecture.
Proceedings ArticleDOI

A new optimizer using particle swarm theory

TL;DR: The optimization of nonlinear functions using particle swarm methodology is described and implementations of two paradigms are discussed and compared, including a recently developed locally oriented paradigm.