scispace - formally typeset
Journal ArticleDOI

Alfalfa plant-derived biostimulant stimulate short-term growth of salt stressed Zea mays L. plants

Reads0
Chats0
TLDR
It is proved that the EM increases plant biomass even when plants are grown under salinity conditions, likely because EM stimulated plant nitrogen metabolism and antioxidant systems.
Abstract
The effects of an alfalfa plant (Medicago sativa L.) hydrolysate-based biostimulant (EM) containing triacontanol (TRIA) and indole-3-acetic acid (IAA) were tested in salt-stressed maize plants. Plants were grown for 2 weeks in the absence of NaCl or in the presence (25, 75 and 150 mM). On the 12th day, plants were supplied for 48 h with 1.0 mg L−1 EM or 11.2 μM TRIA. EM and TRIA stimulated the growth and nitrogen assimilation of control plants to a similar degree, while NaCl reduced plant growth, SPAD index and protein content. EM or TRIA increased plant biomass under salinity conditions. Furthermore, EM induced the activity of enzymes functioning in nitrogen metabolism. The activity of antioxidant enzymes and the synthesis of phenolics were induced by salinity, but decreased after EM treatment. The enhancement of phenylalanine ammonia-lyase (PAL) activity and gene expression by EM was consistent with the increase of flavonoids. The present study proves that the EM increases plant biomass even when plants are grown under salinity conditions. This was likely because EM stimulated plant nitrogen metabolism and antioxidant systems. Therefore, EM may be proposed as bioactive product in agriculture to help plants overcome stress situations.

read more

Citations
More filters
Journal ArticleDOI

Plant biostimulants: Definition, concept, main categories and regulation

TL;DR: The legal and regulatory status of biostimulants are described, with a focus on the EU and the US, and the drivers, opportunities and challenges of their market development are outlined.
Journal ArticleDOI

Agricultural uses of plant biostimulants

TL;DR: There is growing scientific evidence supporting the use of biostimulants as agricultural inputs on diverse plant species, such as increased root growth, enhanced nutrient uptake, and stress tolerance.
Journal ArticleDOI

Biostimulants in Plant Science: A Global Perspective.

TL;DR: This review suggests that the focus of biostimulant research and validation should be upon proof of efficacy and safety and the determination of a broad mechanism of action, without a requirement for a specific mode of action.
Journal ArticleDOI

The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants

TL;DR: An extensive review of the literature shows a clear role for a diverse number of biostimulants that have protective effects against abiotic stress but also reveals the urgent need to address the underlying mechanisms responsible for these effects.
Journal ArticleDOI

Protein hydrolysates as biostimulants in horticulture

TL;DR: An overview of the biostimulant properties of PHs on productivity and product quality of horticultural crops, in particular fruit trees, vegetables, flower crops and ornamentals is given.
References
More filters
Journal ArticleDOI

A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding

TL;DR: This assay is very reproducible and rapid with the dye binding process virtually complete in approximately 2 min with good color stability for 1 hr with little or no interference from cations such as sodium or potassium nor from carbohydrates such as sucrose.
Book

The Mineral Nutrition of Higher Plants

M. H. Martin, +1 more
TL;DR: This chapter discusses the relationship between Mineral Nutrition and Plant Diseases and Pests, and the Soil-Root Interface (Rhizosphere) in Relation to Mineral Nutrition.
Book

Mineral Nutrition of Higher Plants

H. Marschner
TL;DR: In this article, the authors discuss the relationship between mineral nutrition and plant diseases and pests, and diagnose deficiency and toxicity of mineral nutrients in leaves and other aerial parts of a plant.
Journal ArticleDOI

Hydrogen Peroxide is Scavenged by Ascorbate-specific Peroxidase in Spinach Chloroplasts

TL;DR: Observations confirm that the electron donor for the scavenging of hydrogen peroxide in chloroplasts is L-ascorbate and that the L-ASCorbate is regenerated from DHA by the system: photosystem I-*ferredoxin-*NADP^>glutathione and a preliminary characterization of the chloroplast peroxidase is given.
Related Papers (5)