scispace - formally typeset
Open AccessProceedings ArticleDOI

Amulet: Aggregating Multi-level Convolutional Features for Salient Object Detection

TLDR
Amulet is presented, a generic aggregating multi-level convolutional feature framework for salient object detection that provides accurate salient object labeling and performs favorably against state-of-the-art approaches in terms of near all compared evaluation metrics.
Abstract
Fully convolutional neural networks (FCNs) have shown outstanding performance in many dense labeling problems. One key pillar of these successes is mining relevant information from features in convolutional layers. However, how to better aggregate multi-level convolutional feature maps for salient object detection is underexplored. In this work, we present Amulet, a generic aggregating multi-level convolutional feature framework for salient object detection. Our framework first integrates multi-level feature maps into multiple resolutions, which simultaneously incorporate coarse semantics and fine details. Then it adaptively learns to combine these feature maps at each resolution and predict saliency maps with the combined features. Finally, the predicted results are efficiently fused to generate the final saliency map. In addition, to achieve accurate boundary inference and semantic enhancement, edge-aware feature maps in low-level layers and the predicted results of low resolution features are recursively embedded into the learning framework. By aggregating multi-level convolutional features in this efficient and flexible manner, the proposed saliency model provides accurate salient object labeling. Comprehensive experiments demonstrate that our method performs favorably against state-of-the-art approaches in terms of near all compared evaluation metrics.

read more

Citations
More filters
Journal ArticleDOI

U2-Net: Going deeper with nested U-structure for salient object detection

TL;DR: A simple yet powerful deep network architecture, U2-Net, for salient object detection (SOD), a two-level nested U-structure that enables us to train a deep network from scratch without using backbones from image classification tasks.
Proceedings ArticleDOI

PiCANet: Learning Pixel-Wise Contextual Attention for Saliency Detection

TL;DR: Zhang et al. as discussed by the authors proposed a pixel-wise contextual attention network to learn to selectively attend to informative context locations for each pixel, which can generate an attention map in which each attention weight corresponds to the contextual relevance at each context location.
Proceedings ArticleDOI

Progressive Attention Guided Recurrent Network for Salient Object Detection

TL;DR: A novel attention guided network which selectively integrates multi-level contextual information in a progressive manner and introduces multi-path recurrent feedback to enhance this proposed progressive attention driven framework.
Proceedings ArticleDOI

Multi-Scale Interactive Network for Salient Object Detection

TL;DR: The consistency-enhanced loss is exploited to highlight the fore-/back-ground difference and preserve the intra-class consistency in the aggregate interaction modules to integrate the features from adjacent levels, in which less noise is introduced because of only using small up-/down-sampling rates.
Proceedings ArticleDOI

Salient Object Detection With Pyramid Attention and Salient Edges

TL;DR: Exhaustive experiments confirm that the proposed pyramid attention and salient edges are effective for salient object detection and the deep saliency model outperforms state-of-the-art approaches for several benchmarks with a fast processing speed (25fps on one GPU).
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Book ChapterDOI

U-Net: Convolutional Networks for Biomedical Image Segmentation

TL;DR: Neber et al. as discussed by the authors proposed a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently, which can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks.
Proceedings ArticleDOI

Fully convolutional networks for semantic segmentation

TL;DR: The key insight is to build “fully convolutional” networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning.
Related Papers (5)