scispace - formally typeset
Open AccessJournal Article

An Energy-Efficient MAC Protocol for Wireless Sensor Networks

Wei Ye, +2 more
- 10 Jun 2009 - 
- Vol. 01, Iss: 1, pp 0-0
TLDR
S-MAC as discussed by the authors is a medium access control protocol designed for wireless sensor networks, which uses three novel techniques to reduce energy consumption and support self-configuration, including virtual clusters to auto-sync on sleep schedules.
Abstract
This paper proposes S-MAC, a medium-access control (MAC) protocol designed for wireless sensor networks. Wireless sensor networks use battery-operated computing and sensing devices. A network of these devices will collaborate for a common application such as environmental monitoring. We expect sensor networks to be deployed in an ad hoc fashion, with individual nodes remaining largely inactive for long periods of time, but then becoming suddenly active when something is detected. These characteristics of sensor networks and applications motivate a MAC that is different from traditional wireless MACs such as IEEE 802.11 in almost every way: energy conservation and self-configuration are primary goals, while per-node fairness and latency are less important. S-MAC uses three novel techniques to reduce energy consumption and support self-configuration. To reduce energy consumption in listening to an idle channel, nodes periodically sleep. Neighboring nodes form virtual clusters to auto-synchronize on sleep schedules. Inspired by PAMAS, S-MAC also sets the radio to sleep during transmissions of other nodes. Unlike PAMAS, it only uses in-channel signaling. Finally, S-MAC applies message passing to reduce contention latency for sensor-network applications that require store-and-forward processing as data move through the network. We evaluate our implementation of S-MAC over a sample sensor node, the Mote, developed at University of California, Berkeley. The experiment results show that, on a source node, an 802.11-like MAC consumes 2–6 times more energy than S-MAC for traffic load with messages sent every 1–10s.

read more

Citations
More filters
Journal ArticleDOI

Emerging techniques for long lived wireless sensor networks

TL;DR: Recent advances in energy-aware platforms for information processing and communication protocols for sensor collaboration are described and emerging, hitherto largely unexplored techniques, such as the use of environmental energy harvesting and the optimization of the energy consumed during sensing are looked at.
Proceedings ArticleDOI

Asynchronous wakeup for ad hoc networks

TL;DR: Simulation studies indicate that the proposed asynchronous wakeup protocol is quite effective under various traffic characteristics and loads: energy saving can be as high as 70%, while the packet delivery ratio is comparable to that without power management.
Proceedings ArticleDOI

Energy efficiency based packet size optimization in wireless sensor networks

TL;DR: It is shown that forward error correction can improve the energy efficiency eventhough it introduces additional parity bits and encoding/decoding energy consumptions, and binary BCH codes are found to be 15% more energy efficient than the best performing convolutional codes.
Journal ArticleDOI

Medium Access Control protocols for ad hoc wireless networks: A survey

TL;DR: This work presents a classification of MAC protocols and their brief description, based on their operating principles and underlying features, and presents a brief summary of key ideas and a general direction for future work.
Book ChapterDOI

WiseMAC: An Ultra Low Power MAC Protocol for Multi-hop Wireless Sensor Networks

TL;DR: The novelty in this protocol consists in exploiting the knowledge of the sampling schedule of one’s direct neighbors to use a wake-up preamble of minimized size, which allows not only to reduce the transmit and the receive power consumption, but also brings a drastic reduction of the energy wasted due to overhearing.
References
More filters

Energy-efficient communication protocols for wireless microsensor networks

TL;DR: LEACH (Low-Energy Adaptive Clustering Hierarchy), a clustering-based protocol that utilizes randomized rotation of local cluster based station (cluster-heads) to evenly distribute the energy load among the sensors in the network, is proposed.
Proceedings ArticleDOI

Directed diffusion: a scalable and robust communication paradigm for sensor networks

TL;DR: This paper explores and evaluates the use of directed diffusion for a simple remote-surveillance sensor network and its implications for sensing, communication and computation.
Journal ArticleDOI

System architecture directions for networked sensors

TL;DR: Key requirements are identified, a small device is developed that is representative of the class, a tiny event-driven operating system is designed, and it is shown that it provides support for efficient modularity and concurrency-intensive operation.
Journal ArticleDOI

Wireless integrated network sensors

TL;DR: The WINS network represents a new monitoring and control capability for applications in such industries as transportation, manufacturing, health care, environmental oversight, and safety and security, and opportunities depend on development of a scalable, low-cost, sensor-network architecture.
Proceedings ArticleDOI

MACAW: a media access protocol for wireless LAN's

TL;DR: This paper studies media access protocols for a single channel wireless LAN being developed at Xerox Corporation's Palo Alto Research Center and develops a new protocol, MACAW, which uses an RTS-CTS-DS-DATA-ACK message exchange and includes a significantly different backoff algorithm.
Related Papers (5)