scispace - formally typeset
Open AccessJournal Article

An Energy-Efficient MAC Protocol for Wireless Sensor Networks

Wei Ye, +2 more
- 10 Jun 2009 - 
- Vol. 01, Iss: 1, pp 0-0
TLDR
S-MAC as discussed by the authors is a medium access control protocol designed for wireless sensor networks, which uses three novel techniques to reduce energy consumption and support self-configuration, including virtual clusters to auto-sync on sleep schedules.
Abstract
This paper proposes S-MAC, a medium-access control (MAC) protocol designed for wireless sensor networks. Wireless sensor networks use battery-operated computing and sensing devices. A network of these devices will collaborate for a common application such as environmental monitoring. We expect sensor networks to be deployed in an ad hoc fashion, with individual nodes remaining largely inactive for long periods of time, but then becoming suddenly active when something is detected. These characteristics of sensor networks and applications motivate a MAC that is different from traditional wireless MACs such as IEEE 802.11 in almost every way: energy conservation and self-configuration are primary goals, while per-node fairness and latency are less important. S-MAC uses three novel techniques to reduce energy consumption and support self-configuration. To reduce energy consumption in listening to an idle channel, nodes periodically sleep. Neighboring nodes form virtual clusters to auto-synchronize on sleep schedules. Inspired by PAMAS, S-MAC also sets the radio to sleep during transmissions of other nodes. Unlike PAMAS, it only uses in-channel signaling. Finally, S-MAC applies message passing to reduce contention latency for sensor-network applications that require store-and-forward processing as data move through the network. We evaluate our implementation of S-MAC over a sample sensor node, the Mote, developed at University of California, Berkeley. The experiment results show that, on a source node, an 802.11-like MAC consumes 2–6 times more energy than S-MAC for traffic load with messages sent every 1–10s.

read more

Citations
More filters
Journal ArticleDOI

Fairness in Wireless Networks:Issues, Measures and Challenges

TL;DR: This article presents a general view of fairness studies, and poses three core questions that help to delineate the nuances in defining fairness, and looks into the major fairness research domains in wireless networks such as fair energy consumption control, power control, topology control, link and flow scheduling, channel assignment, rate allocation, congestion control and routing protocols.
Proceedings ArticleDOI

Sensor networks with mobile agents

TL;DR: An opportunistic ALOHA random access coupled with a direct sequence spread spectrum physical layer is proposed for large scale low power sensor network that enables energy efficient operations under severely limited power constraints.
Journal ArticleDOI

Energy-efficient, collision-free medium access control for wireless sensor networks

TL;DR: The results indicate that TRAMA outperforms contention-based protocols (CSMA, 802.11 and S-MAC) and also static scheduled-access protocols (NAMA) with significant energy savings and is shown to be fair and correct.
Proceedings ArticleDOI

RMAC: A Routing-Enhanced Duty-Cycle MAC Protocol for Wireless Sensor Networks

TL;DR: Simulation results in ns-2 show that RMAC achieves significant improvement in end-to-end delivery latency over S-MAC and can handle traffic contention much more efficiently than S- MAC, without sacrificing energy efficiency or network throughput.
Journal ArticleDOI

A MAC protocol to reduce sensor network energy consumption using a wakeup radio

TL;DR: In this paper, a two-radio architecture is used which allows a sensor to "wakeup" a neighbor with a busy tone and send its packets for that destination, but this process is expensive because all neighbors must awake and listen to the primary channel to determine who is the intended destination.
References
More filters

Energy-efficient communication protocols for wireless microsensor networks

TL;DR: LEACH (Low-Energy Adaptive Clustering Hierarchy), a clustering-based protocol that utilizes randomized rotation of local cluster based station (cluster-heads) to evenly distribute the energy load among the sensors in the network, is proposed.
Proceedings ArticleDOI

Directed diffusion: a scalable and robust communication paradigm for sensor networks

TL;DR: This paper explores and evaluates the use of directed diffusion for a simple remote-surveillance sensor network and its implications for sensing, communication and computation.
Journal ArticleDOI

System architecture directions for networked sensors

TL;DR: Key requirements are identified, a small device is developed that is representative of the class, a tiny event-driven operating system is designed, and it is shown that it provides support for efficient modularity and concurrency-intensive operation.
Journal ArticleDOI

Wireless integrated network sensors

TL;DR: The WINS network represents a new monitoring and control capability for applications in such industries as transportation, manufacturing, health care, environmental oversight, and safety and security, and opportunities depend on development of a scalable, low-cost, sensor-network architecture.
Proceedings ArticleDOI

MACAW: a media access protocol for wireless LAN's

TL;DR: This paper studies media access protocols for a single channel wireless LAN being developed at Xerox Corporation's Palo Alto Research Center and develops a new protocol, MACAW, which uses an RTS-CTS-DS-DATA-ACK message exchange and includes a significantly different backoff algorithm.
Related Papers (5)