scispace - formally typeset
Open AccessJournal Article

An Energy-Efficient MAC Protocol for Wireless Sensor Networks

Wei Ye, +2 more
- 10 Jun 2009 - 
- Vol. 01, Iss: 1, pp 0-0
TLDR
S-MAC as discussed by the authors is a medium access control protocol designed for wireless sensor networks, which uses three novel techniques to reduce energy consumption and support self-configuration, including virtual clusters to auto-sync on sleep schedules.
Abstract
This paper proposes S-MAC, a medium-access control (MAC) protocol designed for wireless sensor networks. Wireless sensor networks use battery-operated computing and sensing devices. A network of these devices will collaborate for a common application such as environmental monitoring. We expect sensor networks to be deployed in an ad hoc fashion, with individual nodes remaining largely inactive for long periods of time, but then becoming suddenly active when something is detected. These characteristics of sensor networks and applications motivate a MAC that is different from traditional wireless MACs such as IEEE 802.11 in almost every way: energy conservation and self-configuration are primary goals, while per-node fairness and latency are less important. S-MAC uses three novel techniques to reduce energy consumption and support self-configuration. To reduce energy consumption in listening to an idle channel, nodes periodically sleep. Neighboring nodes form virtual clusters to auto-synchronize on sleep schedules. Inspired by PAMAS, S-MAC also sets the radio to sleep during transmissions of other nodes. Unlike PAMAS, it only uses in-channel signaling. Finally, S-MAC applies message passing to reduce contention latency for sensor-network applications that require store-and-forward processing as data move through the network. We evaluate our implementation of S-MAC over a sample sensor node, the Mote, developed at University of California, Berkeley. The experiment results show that, on a source node, an 802.11-like MAC consumes 2–6 times more energy than S-MAC for traffic load with messages sent every 1–10s.

read more

Citations
More filters
Proceedings ArticleDOI

Wakeup scheduling in wireless sensor networks

TL;DR: This work considers the design of efficient wakeup scheduling schemes for energy constrained sensor nodes that adhere to the bidirectional end-to-end delay constraints posed by such applications, and proposes novel scheduling methods that outperform existing ones.
Journal ArticleDOI

OpenWSN: a standards‐based low‐power wireless development environment

TL;DR: The OpenWSN project is an open‐source implementation of a fully standards‐based protocol stack for capillary networks, rooted in the new IEEE802.15.4e Time Synchronized Channel Hopping standard, which enables ultra‐low‐power and highly reliable mesh networks, which are fully integrated into the Internet.
Proceedings ArticleDOI

On-demand power management for ad hoc networks

TL;DR: Simulation studies using the proposed extensible on-demand power management framework with the dynamic source routing protocol show a reduction in energy consumption near 50% when compared to a network without power management under both long-lived CBR traffic and on-off traffic loads, with comparable throughput and latency.
Book ChapterDOI

MobiRoute: routing towards a mobile sink for improving lifetime in sensor networks

TL;DR: In this article, the authors investigate the approach that makes use of a mobile sink for balancing the traffic load and in turn improving network lifetime, and propose a routing protocol, MobiRoute, that effectively supports sink mobility.
Proceedings ArticleDOI

Experimental study of concurrent transmission in wireless sensor networks

TL;DR: A systematic experimental study of the effects of concurrent packet transmissions in low-power wireless networks offers a better understanding of concurrent transmissions and suggests richer interference models and useful guidelines to improve the design and analysis of higher layer protocols.
References
More filters

Energy-efficient communication protocols for wireless microsensor networks

TL;DR: LEACH (Low-Energy Adaptive Clustering Hierarchy), a clustering-based protocol that utilizes randomized rotation of local cluster based station (cluster-heads) to evenly distribute the energy load among the sensors in the network, is proposed.
Proceedings ArticleDOI

Directed diffusion: a scalable and robust communication paradigm for sensor networks

TL;DR: This paper explores and evaluates the use of directed diffusion for a simple remote-surveillance sensor network and its implications for sensing, communication and computation.
Journal ArticleDOI

System architecture directions for networked sensors

TL;DR: Key requirements are identified, a small device is developed that is representative of the class, a tiny event-driven operating system is designed, and it is shown that it provides support for efficient modularity and concurrency-intensive operation.
Journal ArticleDOI

Wireless integrated network sensors

TL;DR: The WINS network represents a new monitoring and control capability for applications in such industries as transportation, manufacturing, health care, environmental oversight, and safety and security, and opportunities depend on development of a scalable, low-cost, sensor-network architecture.
Proceedings ArticleDOI

MACAW: a media access protocol for wireless LAN's

TL;DR: This paper studies media access protocols for a single channel wireless LAN being developed at Xerox Corporation's Palo Alto Research Center and develops a new protocol, MACAW, which uses an RTS-CTS-DS-DATA-ACK message exchange and includes a significantly different backoff algorithm.
Related Papers (5)