scispace - formally typeset
Open AccessJournal Article

An Energy-Efficient MAC Protocol for Wireless Sensor Networks

Wei Ye, +2 more
- 10 Jun 2009 - 
- Vol. 01, Iss: 1, pp 0-0
TLDR
S-MAC as discussed by the authors is a medium access control protocol designed for wireless sensor networks, which uses three novel techniques to reduce energy consumption and support self-configuration, including virtual clusters to auto-sync on sleep schedules.
Abstract
This paper proposes S-MAC, a medium-access control (MAC) protocol designed for wireless sensor networks. Wireless sensor networks use battery-operated computing and sensing devices. A network of these devices will collaborate for a common application such as environmental monitoring. We expect sensor networks to be deployed in an ad hoc fashion, with individual nodes remaining largely inactive for long periods of time, but then becoming suddenly active when something is detected. These characteristics of sensor networks and applications motivate a MAC that is different from traditional wireless MACs such as IEEE 802.11 in almost every way: energy conservation and self-configuration are primary goals, while per-node fairness and latency are less important. S-MAC uses three novel techniques to reduce energy consumption and support self-configuration. To reduce energy consumption in listening to an idle channel, nodes periodically sleep. Neighboring nodes form virtual clusters to auto-synchronize on sleep schedules. Inspired by PAMAS, S-MAC also sets the radio to sleep during transmissions of other nodes. Unlike PAMAS, it only uses in-channel signaling. Finally, S-MAC applies message passing to reduce contention latency for sensor-network applications that require store-and-forward processing as data move through the network. We evaluate our implementation of S-MAC over a sample sensor node, the Mote, developed at University of California, Berkeley. The experiment results show that, on a source node, an 802.11-like MAC consumes 2–6 times more energy than S-MAC for traffic load with messages sent every 1–10s.

read more

Citations
More filters
Proceedings ArticleDOI

Minimizing communication costs in hierarchically clustered networks of wireless sensors

TL;DR: This paper develops a technique for quantifying and minimizing the energy required to gather data from all sensors in a multi-hop wireless sensor network that combines analytical results from stochastic geometry with a distributed algorithm for generating clusters.

A Ph.D. Thesis

TL;DR: Citigroup Global Markets Inc., Investment Banking Division Director, Global Financial Strategy Group 2005-2007 Advised investment banking and corporate clients in industrials and financial institutions sectors on capital structure, risk management, distribution policies, liquidity, credit ratings, cost of capital and valuation.
Journal ArticleDOI

Reliable bursty convergecast in wireless sensor networks

TL;DR: This work designs a window-less block acknowledgment scheme that guarantees continuous packet forwarding and replicates the acknowledgment for a packet, and designs mechanisms to handle varying ack-delay and to reduce delay in timer-based retransmissions and achieves a close-to-optimal goodput.

Self-configuring localization systems

TL;DR: This dissertation addresses the challenges involved in localization for very large, ad hoc deployed sensor networks, and advocates and develops a self-configuring mechanism in which beacons themselves measure and adapt to their environment and availability of neighboring beacons.
Journal ArticleDOI

A Comprehensive Study of IoT and WSN MAC Protocols: Research Issues, Challenges and Opportunities

TL;DR: The essential properties of MAC protocols, the MAC for IoT and the common causes of energy consumptions are discussed and several protocols under each category are discussed in depth, emphasizing their strengths and weaknesses, and giving a detailed comparison ofMAC protocols.
References
More filters

Energy-efficient communication protocols for wireless microsensor networks

TL;DR: LEACH (Low-Energy Adaptive Clustering Hierarchy), a clustering-based protocol that utilizes randomized rotation of local cluster based station (cluster-heads) to evenly distribute the energy load among the sensors in the network, is proposed.
Proceedings ArticleDOI

Directed diffusion: a scalable and robust communication paradigm for sensor networks

TL;DR: This paper explores and evaluates the use of directed diffusion for a simple remote-surveillance sensor network and its implications for sensing, communication and computation.
Journal ArticleDOI

System architecture directions for networked sensors

TL;DR: Key requirements are identified, a small device is developed that is representative of the class, a tiny event-driven operating system is designed, and it is shown that it provides support for efficient modularity and concurrency-intensive operation.
Journal ArticleDOI

Wireless integrated network sensors

TL;DR: The WINS network represents a new monitoring and control capability for applications in such industries as transportation, manufacturing, health care, environmental oversight, and safety and security, and opportunities depend on development of a scalable, low-cost, sensor-network architecture.
Proceedings ArticleDOI

MACAW: a media access protocol for wireless LAN's

TL;DR: This paper studies media access protocols for a single channel wireless LAN being developed at Xerox Corporation's Palo Alto Research Center and develops a new protocol, MACAW, which uses an RTS-CTS-DS-DATA-ACK message exchange and includes a significantly different backoff algorithm.
Related Papers (5)