scispace - formally typeset
Open AccessProceedings Article

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

Sergey Ioffe, +1 more
- Vol. 1, pp 448-456
TLDR
Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin.
Abstract
Training Deep Neural Networks is complicated by the fact that the distribution of each layer's inputs changes during training, as the parameters of the previous layers change. This slows down the training by requiring lower learning rates and careful parameter initialization, and makes it notoriously hard to train models with saturating nonlinearities. We refer to this phenomenon as internal covariate shift, and address the problem by normalizing layer inputs. Our method draws its strength from making normalization a part of the model architecture and performing the normalization for each training mini-batch. Batch Normalization allows us to use much higher learning rates and be less careful about initialization, and in some cases eliminates the need for Dropout. Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin. Using an ensemble of batch-normalized networks, we improve upon the best published result on ImageNet classification: reaching 4.82% top-5 test error, exceeding the accuracy of human raters.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI

Deep spatial autoencoders for visuomotor learning

TL;DR: This work presents an approach that automates state-space construction by learning a state representation directly from camera images by using a deep spatial autoencoder to acquire a set of feature points that describe the environment for the current task, such as the positions of objects.
Posted Content

Sharpness-Aware Minimization for Efficiently Improving Generalization

TL;DR: This work introduces a novel, effective procedure for simultaneously minimizing loss value and loss sharpness, Sharpness-Aware Minimization (SAM), which improves model generalization across a variety of benchmark datasets and models, yielding novel state-of-the-art performance for several.
Proceedings ArticleDOI

Very deep convolutional networks for end-to-end speech recognition

TL;DR: This work successively train very deep convolutional networks to add more expressive power and better generalization for end-to-end ASR models, and applies network-in-network principles, batch normalization, residual connections and convolutionAL LSTMs to build very deep recurrent and Convolutional structures.
Posted Content

RepVGG: Making VGG-style ConvNets Great Again.

TL;DR: A simple but powerful architecture of convolutional neural network, which has a VGG-like inference-time body composed of nothing but a stack of 3 × 3 convolution and ReLU, while the training-time model has a multi-branch topology.
Book ChapterDOI

Suggestive Annotation: A Deep Active Learning Framework for Biomedical Image Segmentation

TL;DR: A deep active learning framework that combines fully convolutional network (FCN) and active learning to significantly reduce annotation effort by making judicious suggestions on the most effective annotation areas is presented.
References
More filters
Journal ArticleDOI

Gradient-based learning applied to document recognition

TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Proceedings ArticleDOI

Going deeper with convolutions

TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Journal Article

Dropout: a simple way to prevent neural networks from overfitting

TL;DR: It is shown that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.
Journal ArticleDOI

ImageNet Large Scale Visual Recognition Challenge

TL;DR: The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) as mentioned in this paper is a benchmark in object category classification and detection on hundreds of object categories and millions of images, which has been run annually from 2010 to present, attracting participation from more than fifty institutions.
Proceedings Article

Rectified Linear Units Improve Restricted Boltzmann Machines

TL;DR: Restricted Boltzmann machines were developed using binary stochastic hidden units that learn features that are better for object recognition on the NORB dataset and face verification on the Labeled Faces in the Wild dataset.
Related Papers (5)