scispace - formally typeset
Open AccessProceedings Article

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

Sergey Ioffe, +1 more
- Vol. 1, pp 448-456
TLDR
Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin.
Abstract
Training Deep Neural Networks is complicated by the fact that the distribution of each layer's inputs changes during training, as the parameters of the previous layers change. This slows down the training by requiring lower learning rates and careful parameter initialization, and makes it notoriously hard to train models with saturating nonlinearities. We refer to this phenomenon as internal covariate shift, and address the problem by normalizing layer inputs. Our method draws its strength from making normalization a part of the model architecture and performing the normalization for each training mini-batch. Batch Normalization allows us to use much higher learning rates and be less careful about initialization, and in some cases eliminates the need for Dropout. Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin. Using an ensemble of batch-normalized networks, we improve upon the best published result on ImageNet classification: reaching 4.82% top-5 test error, exceeding the accuracy of human raters.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Unsupervised Deep Change Vector Analysis for Multiple-Change Detection in VHR Images

TL;DR: A novel unsupervised context-sensitive framework—deep change vector analysis (DCVA)—for CD in multitemporal VHR images that exploit convolutional neural network (CNN) features is proposed and experimental results on mult itemporal data sets of Worldview-2, Pleiades, and Quickbird images confirm the effectiveness of the proposed method.
Posted Content

Generative Adversarial Networks for Extreme Learned Image Compression

TL;DR: If a semantic label map of the original image is available, the learned image compression system can fully synthesize unimportant regions in the decoded image such as streets and trees from the label map, proportionally reducing the storage cost.
Proceedings ArticleDOI

RepVGG: Making VGG-style ConvNets Great Again

TL;DR: RepVGG as mentioned in this paper decouples the training-time and inference-time architecture by a structural re-parameterization technique and achieves state-of-the-art accuracy on ImageNet.
Posted Content

Selective Kernel Networks

TL;DR: Detailed analyses show that the neurons in SKNet can capture target objects with different scales, which verifies the capability of neurons for adaptively adjusting their receptive field sizes according to the input.
Posted Content

ActionVLAD: Learning spatio-temporal aggregation for action classification

TL;DR: In this paper, a two-stream network with learnable spatio-temporal feature aggregation is proposed for action classification, which is end-to-end trainable for whole-video classification.
References
More filters
Journal ArticleDOI

Gradient-based learning applied to document recognition

TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Proceedings ArticleDOI

Going deeper with convolutions

TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Journal Article

Dropout: a simple way to prevent neural networks from overfitting

TL;DR: It is shown that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.
Journal ArticleDOI

ImageNet Large Scale Visual Recognition Challenge

TL;DR: The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) as mentioned in this paper is a benchmark in object category classification and detection on hundreds of object categories and millions of images, which has been run annually from 2010 to present, attracting participation from more than fifty institutions.
Proceedings Article

Rectified Linear Units Improve Restricted Boltzmann Machines

TL;DR: Restricted Boltzmann machines were developed using binary stochastic hidden units that learn features that are better for object recognition on the NORB dataset and face verification on the Labeled Faces in the Wild dataset.
Related Papers (5)