scispace - formally typeset
Open AccessProceedings Article

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

Sergey Ioffe, +1 more
- Vol. 1, pp 448-456
TLDR
Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin.
Abstract
Training Deep Neural Networks is complicated by the fact that the distribution of each layer's inputs changes during training, as the parameters of the previous layers change. This slows down the training by requiring lower learning rates and careful parameter initialization, and makes it notoriously hard to train models with saturating nonlinearities. We refer to this phenomenon as internal covariate shift, and address the problem by normalizing layer inputs. Our method draws its strength from making normalization a part of the model architecture and performing the normalization for each training mini-batch. Batch Normalization allows us to use much higher learning rates and be less careful about initialization, and in some cases eliminates the need for Dropout. Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin. Using an ensemble of batch-normalized networks, we improve upon the best published result on ImageNet classification: reaching 4.82% top-5 test error, exceeding the accuracy of human raters.

read more

Content maybe subject to copyright    Report

Citations
More filters
Posted Content

Learning a Deep Embedding Model for Zero-Shot Learning

TL;DR: Zhang et al. as mentioned in this paper propose to use the visual space as the embedding space instead of embedding into a semantic space or an intermediate space, which is more effective for the subsequent nearest neighbor search.
Journal ArticleDOI

In Toto Imaging and Reconstruction of Post-Implantation Mouse Development at the Single-Cell Level

TL;DR: A light-sheet microscope is developed that adapts itself to the dramatic changes in size, shape, and optical properties of the post-implantation mouse embryo and captures its development from gastrulation to early organogenesis at the cellular level.
Posted Content

Learning with a Strong Adversary

TL;DR: A new and simple way of finding adversarial examples is presented and experimentally shown to be efficient and greatly improves the robustness of the classification models produced.
Proceedings ArticleDOI

PointGrid: A Deep Network for 3D Shape Understanding

TL;DR: The PointGrid is proposed, a 3D convolutional network that incorporates a constant number of points within each grid cell thus allowing the network to learn higher order local approximation functions that could better represent the local geometry shape details.
Posted Content

Towards Accurate Binary Convolutional Neural Network

TL;DR: The implementation of the resulting binary CNN, denoted as ABC-Net, is shown to achieve much closer performance to its full-precision counterpart, and even reach the comparable prediction accuracy on ImageNet and forest trail datasets, given adequate binary weight bases and activations.
References
More filters
Journal ArticleDOI

Gradient-based learning applied to document recognition

TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Proceedings ArticleDOI

Going deeper with convolutions

TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Journal Article

Dropout: a simple way to prevent neural networks from overfitting

TL;DR: It is shown that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.
Journal ArticleDOI

ImageNet Large Scale Visual Recognition Challenge

TL;DR: The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) as mentioned in this paper is a benchmark in object category classification and detection on hundreds of object categories and millions of images, which has been run annually from 2010 to present, attracting participation from more than fifty institutions.
Proceedings Article

Rectified Linear Units Improve Restricted Boltzmann Machines

TL;DR: Restricted Boltzmann machines were developed using binary stochastic hidden units that learn features that are better for object recognition on the NORB dataset and face verification on the Labeled Faces in the Wild dataset.
Related Papers (5)