scispace - formally typeset
Journal ArticleDOI

Blood–Brain Barrier Transport of Kynurenines: Implications for Brain Synthesis and Metabolism

Reads0
Chats0
TLDR
The results demonstrate the saturable transfer of L‐KYN across the blood–brain barrier and suggest that circulating L‐ KYN, 3‐HKYN, and ANA may each contribute significantly to respective cerebral pools under normal conditions.
Abstract
To evaluate the potential contribution of circulating kynurenines to brain kynurenine pools, the rates of cerebral uptake and mechanisms of blood-brain barrier transport were determined for several kynurenine metabolites of tryptophan, including L-kynurenine (L-KYN), 3-hydroxykynurenine (3-HKYN), 3-hydroxyanthranilic acid (3-HANA), anthranilic acid (ANA), kynurenic acid (KYNA), and quinolinic acid (QUIN), in pentobarbital-anesthetized rats using an in situ brain perfusion technique. L-KYN was found to be taken up into brain at a significant rate [permeability-surface area product (PA) = 2-3 x 10(-3) ml/s/g] by the large neutral amino acid carrier (L-system) of the blood-brain barrier. Best-fit estimates of the Vmax and Km of saturable L-KYN transfer equalled 4.5 x 10(-4) mumol/s/g and 0.16 mumol/ml, respectively. The same carrier may also mediate the brain uptake of 3-HKYN as D,L-3-HKYN competitively inhibited the brain transfer of the large neutral amino acid L-leucine. For the other metabolites, uptake appeared mediated by passive diffusion. This occurred at a significant rate for ANA (PA, 0.7-1.6 x 10(-3) ml/s/g), and at far lower rates (PA, 2-7 x 10(-5) ml/s/g) for 3-HANA, KYNA, and QUIN. Transfer for KYNA, 3-HANA, and ANA also appeared to be limited by plasma protein binding. The results demonstrate the saturable transfer of L-KYN across the blood-brain barrier and suggest that circulating L-KYN, 3-HKYN, and ANA may each contribute significantly to respective cerebral pools. In contrast, QUIN, KYNA, and 3-HANA cross the blood-brain barrier poorly, and therefore are not expected to contribute significantly to brain pools under normal conditions.

read more

Citations
More filters
Journal ArticleDOI

Identification of botanical biomarkers found in Corsican honey

TL;DR: NMR spectra were acquired from 374 authentic European honeys collected during 2 years, with the majority of these taken from the island of Corsica, and α-Isophorone and 2,5-dihydroxyphenylacetic acid were confirmed as markers of strawberry-tree honey.
Journal ArticleDOI

l-kynurenine combined with probenecid and the novel synthetic kynurenic acid derivative attenuate nitroglycerin-induced nNOS in the rat caudal trigeminal nucleus

TL;DR: The data suggest that the stimulating effect of NTG, and thus of NO, on the expression of nNOS might be modulated by increasing the KYNA level in the brain, probably through the NMDA receptors.
Journal ArticleDOI

Cancer induces inflammation and depressive-like behavior in the mouse: Modulation by social housing

TL;DR: It is concluded that tumor elicits anhedonic depressive-like behavior in a murine model of ovarian cancer, which may have important implications for etiology of depression in the clinical cancer setting.
Journal ArticleDOI

Quinolinic acid in vivo synthesis rates, extracellular concentrations, and intercompartmental distributions in normal and immune-activated brain as determined by multiple-isotope microdialysis.

TL;DR: Results demonstrate that brain homogenate measures are a reflection of ECF concentrations, although there are quantitative differences in the values obtained.
Journal ArticleDOI

Evidence that quinolinic acid severely impairs energy metabolism through activation of NMDA receptors in striatum from developing rats.

TL;DR: Observations strongly indicate that oxidative phosphorylation, the citric acid cycle and cellular energy transfer are compromised by high concentrations of quinolinic acid in the striatum of young rats and that these inhibitory effects were probably mediated by NMDA stimulation.
References
More filters
Journal ArticleDOI

Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain

TL;DR: Intracerebral injection of the neuroexcitatory tryptophan metabolite, quinolinic acid, has behavioral, neurochemical and neuropathological consequences reminiscent of those of exogenous excitotoxins, such as kainic and ibotenic acids.
Journal ArticleDOI

Amino acid assignment to one of three blood-brain barrier amino acid carriers

TL;DR: Affinity for a basic amino acid carrier system was demonstrated for arginine, ornithine, and lysine and a third, low-capacity independent carrier system transporting aspartic and glutamic acids was demonstrated.
Journal ArticleDOI

An in situ brain perfusion technique to study cerebrovascular transport in the rat

TL;DR: The in situ brain perfusion technique is a sensitive new method to study cerebrovascular transfer in the rat and permits absolute control of perfusate composition.
Related Papers (5)