scispace - formally typeset
Journal ArticleDOI

Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure

Reads0
Chats0
TLDR
In this paper, the authors investigate cavity-quantum electrodynamics (QED) effects in an all-semiconductor nanostructure by tuning a single self-assembled InAs quantum dot into resonance with a high quality factor microdisk whispering gallery mode (WGM).
Abstract
We investigate cavity-quantum electrodynamics (QED) effects in an all-semiconductor nanostructure by tuning a single self-assembled InAs quantum dot (QD) into resonance with a high quality factor microdisk whispering gallery mode (WGM). The stronger temperature dependence of the QD single-exciton (1X) resonance allows us to change the relative energy of the WGM and the 1X transitions by varying the sample temperature. The two coupled resonances exhibit crossing behavior due to the weak coupling cavity-QED regime. We demonstrate exciton lifetime reduction by 6 due to the Purcell effect by tuning the QD into resonance with the WGM. Our experiments also show that single-exciton lifetime is independent of temperature up to 50 K.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics

TL;DR: It is shown that the strong coupling regime can be attained in a solid-state system, and the concept of circuit quantum electrodynamics opens many new possibilities for studying the strong interaction of light and matter.
Proceedings Article

Optical microcavities

TL;DR: In quantum optical devices, microcavities can coax atoms or quantum dots to emit spontaneous photons in a desired direction or can provide an environment where dissipative mechanisms such as spontaneous emission are overcome so that quantum entanglement of radiation and matter is possible.
Journal ArticleDOI

Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity

TL;DR: The experimental realization of a strongly coupled system in the solid state is reported: a single quantum dot embedded in the spacer of a nanocavity, showing vacuum-field Rabi splitting exceeding the decoherence linewidths of both the nanoc Cavity and the quantum dot.
Journal ArticleDOI

Plasmonic enhancement of molecular fluorescence.

TL;DR: It is found that enhancement of the molecular fluorescence by more than a factor of 50 can be achieved for ICG next to a nanoparticle with a large scattering cross section and a plasmon resonance frequency corresponding to the emission frequency of the molecule.
Journal ArticleDOI

Vacuum Rabi splitting in semiconductors

TL;DR: In this paper, the progress so far in obtaining true quantum-optical strong coupling effects in semiconductors is reviewed and a nonlinear test for the true quantum limit is proposed.
References
More filters
Journal ArticleDOI

A Quantum Dot Single-Photon Turnstile Device

TL;DR: Using pulsed laser excitation of a single quantum dot, a single- photon turnstile device that generates a train of single-photon pulses was demonstrated.
Journal ArticleDOI

Quantum information processing using quantum dot spins and cavity QED

TL;DR: In this paper, a scheme that realizes controlled interactions between two distant quantum dot spins is proposed, where the effective long-range interaction is mediated by the vacuum field of a high finesse microcavity.
Journal ArticleDOI

Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity

TL;DR: In this paper, a spontaneous emission rate enhancement by a factor of up to 5 was selectively observed for the QB's which are on resonance with one-cavity mode. But the effect of the random spatial and spectral distributions of the QBs was not considered.
Related Papers (5)