scispace - formally typeset
Journal ArticleDOI

Cellular processing of platinum anticancer drugs.

TLDR
This review focuses on recently discovered cellular pathways that are activated in response to cisplatin, including those involved in regulating drug uptake, the signalling of DNA damage, cell-cycle checkpoints and arrest, DNA repair and cell death.
Abstract
Cisplatin, carboplatin and oxaliplatin are platinum-based drugs that are widely used in cancer chemotherapy. Platinum–DNA adducts, which are formed following uptake of the drug into the nucleus of cells, activate several cellular processes that mediate the cytotoxicity of these platinum drugs. This review focuses on recently discovered cellular pathways that are activated in response to cisplatin, including those involved in regulating drug uptake, the signalling of DNA damage, cell-cycle checkpoints and arrest, DNA repair and cell death. Such knowledge of the cellular processing of cisplatin adducts with DNA provides valuable clues for the rational design of more efficient platinum-based drugs as well as the development of new therapeutic strategies.

read more

Citations
More filters
Journal ArticleDOI

Cisplatin in cancer therapy: molecular mechanisms of action

TL;DR: This comprehensive review highlights the physicochemical properties of cisplatin and related platinum-based drugs, and discusses its uses (either alone or in combination with other drugs) for the treatment of various human cancers.
Journal ArticleDOI

The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle Delivery, and Pt(IV) Prodrugs

TL;DR: Recently, there has been a surge of activity, based on a great deal of mechanistic information, aimed at developing nonclassical platinum complexes that operate via mechanisms of action distinct from those of the approved drugs as mentioned in this paper.
Journal ArticleDOI

Cisplatin nephrotoxicity: Mechanisms and renoprotective strategies

TL;DR: Examination of tumor-bearing animals and identification of novel renoprotective strategies that do not diminish the anticancer efficacy of cisplatin are essential to the development of clinically applicable interventions.
Journal ArticleDOI

Molecular mechanisms of resistance and toxicity associated with platinating agents.

TL;DR: Preclinical data that has clinical relevance generated over the past five years of platinating agents, including cisplatin, carboplatin, and oxaliplatin are focused on.
Journal ArticleDOI

Organometallic Anticancer Compounds

TL;DR: The quest for alternative drugs to the well-known cisplatin and its derivatives, which are still used in more than 50% of the treatment regimes for patients suffering from cancer, is highly needed, and organometallic compounds have recently been found to be promising anticancer drug candidates.
References
More filters
Journal ArticleDOI

p53 mutations in human cancers

TL;DR: The p53 mutational spectrum differs among cancers of the colon, lung, esophagus, breast, liver, brain, reticuloendothelial tissues, and hemopoietic tissues as mentioned in this paper.
Journal ArticleDOI

Cytochrome c and dATP-Dependent Formation of Apaf-1/Caspase-9 Complex Initiates an Apoptotic Protease Cascade

TL;DR: Mutation of the active site of caspase-9 attenuated the activation of cazase-3 and cellular apoptotic response in vivo, indicating that casp enzyme-9 is the most upstream member of the apoptotic protease cascade that is triggered by cytochrome c and dATP.
Journal ArticleDOI

Patterns and Emerging Mechanisms of the Angiogenic Switch during Tumorigenesis

TL;DR: The work from the authors' laboratories reviewed herein was supported by grants from the National Cancer Institute.
Journal ArticleDOI

Cellular survival: a play in three Akts

TL;DR: The mechanisms by which survival factors regulate the PI3K/c-Akt cascade, the evidence that activation of the PI 3K/ c-AKT pathway promotes cell survival, and the current spectrum of c- akt targets and their roles in mediating c- Akt-dependent cell survival are reviewed.
Journal ArticleDOI

Signal transduction by the JNK group of MAP kinases.

TL;DR: This review will focus on the JNK group of MAP kinases, which are characterized by the sequence TEY and the two stress-activatedMAP kinases: p38 with the sequence TGY, and the c-Jun NH2-terminal kinases (JNK) with the sequences TPY.
Related Papers (5)