scispace - formally typeset
Journal ArticleDOI

Channel coding with multilevel/phase signals

G. Ungerboeck
- 01 Jan 1982 - 
- Vol. 28, Iss: 1, pp 55-67
TLDR
A coding technique is described which improves error performance of synchronous data links without sacrificing data rate or requiring more bandwidth by channel coding with expanded sets of multilevel/phase signals in a manner which increases free Euclidean distance.
Abstract
A coding technique is described which improves error performance of synchronous data links without sacrificing data rate or requiring more bandwidth. This is achieved by channel coding with expanded sets of multilevel/phase signals in a manner which increases free Euclidean distance. Soft maximum--likelihood (ML) decoding using the Viterbi algorithm is assumed. Following a discussion of channel capacity, simple hand-designed trellis codes are presented for 8 phase-shift keying (PSK) and 16 quadrature amplitude-shift keying (QASK) modulation. These simple codes achieve coding gains in the order of 3-4 dB. It is then shown that the codes can be interpreted as binary convolutional codes with a mapping of coded bits into channel signals, which we call "mapping by set partitioning." Based on a new distance measure between binary code sequences which efficiently lower-bounds the Euclidean distance between the corresponding channel signal sequences, a search procedure for more powerful codes is developed. Codes with coding gains up to 6 dB are obtained for a variety of multilevel/phase modulation schemes. Simulation results are presented and an example of carrier-phase tracking is discussed.

read more

Citations
More filters
Proceedings ArticleDOI

Multistage Compute-and-Forward with Multilevel Lattice Codes Based on Product Constructions

TL;DR: In this paper, a lattice-based multistage compute-and-forward scheme was proposed for signal constellations, which can achieve the same computation rate of Nazer and Gastpar for compute and forward under multi-stage decoding.
Journal ArticleDOI

LP-Decodable Permutation Codes Based on Linearly Constrained Permutation Matrices

TL;DR: It is demonstrated that the LP decoding performance of the proposed class of permutation codes is characterized by the vertices of the code polytope of the codes, which enables the use of probabilistic methods for analyzing several code properties.
Journal ArticleDOI

Phase noise effects on M-ary PSK trellis codes

TL;DR: The performance of M-ary phase-shift keying (PSK) coded systems in the presence of added white Gaussian noise (AWGN), with a noisy carrier reference in the receiver, is examined.
Journal ArticleDOI

Covariogram-Based Compressive Sensing for Environmental Wireless Sensor Networks

TL;DR: CB-CS combines a novel sampling mechanism along with an original covariogram-based approach for the online estimation of the covariance structure of the signal and leverages the signal's spatio-temporal correlation structure through the Kronecker CS framework to provide compression versus energy tradeoffs that approach those of idealized CS schemes.
References
More filters
Book

Information Theory and Reliable Communication

TL;DR: This chapter discusses Coding for Discrete Sources, Techniques for Coding and Decoding, and Source Coding with a Fidelity Criterion.
Journal ArticleDOI

The viterbi algorithm

TL;DR: This paper gives a tutorial exposition of the Viterbi algorithm and of how it is implemented and analyzed, and increasing use of the algorithm in a widening variety of areas is foreseen.
Book

Principles of Communication Engineering

TL;DR: Textbook on communication engineering emphasizing random processes, information and detection theory, statistical communication theory, applications, etc.
Journal ArticleDOI

Convolutional codes I: Algebraic structure

TL;DR: Minimal encoders are shown to be immune to catastrophic error propagation and, in fact, to lead in a certain sense to the shortest decoded error sequences possible per error event.
Journal ArticleDOI

Coherent and Noncoherent Detection CPFSK

TL;DR: This work provides a complete analysis of the performance of CPFSK at high SNR as well as low SNR and thereby unifies and extends the results previously available.