scispace - formally typeset
Journal ArticleDOI

Channel coding with multilevel/phase signals

G. Ungerboeck
- 01 Jan 1982 - 
- Vol. 28, Iss: 1, pp 55-67
Reads0
Chats0
TLDR
A coding technique is described which improves error performance of synchronous data links without sacrificing data rate or requiring more bandwidth by channel coding with expanded sets of multilevel/phase signals in a manner which increases free Euclidean distance.
Abstract
A coding technique is described which improves error performance of synchronous data links without sacrificing data rate or requiring more bandwidth. This is achieved by channel coding with expanded sets of multilevel/phase signals in a manner which increases free Euclidean distance. Soft maximum--likelihood (ML) decoding using the Viterbi algorithm is assumed. Following a discussion of channel capacity, simple hand-designed trellis codes are presented for 8 phase-shift keying (PSK) and 16 quadrature amplitude-shift keying (QASK) modulation. These simple codes achieve coding gains in the order of 3-4 dB. It is then shown that the codes can be interpreted as binary convolutional codes with a mapping of coded bits into channel signals, which we call "mapping by set partitioning." Based on a new distance measure between binary code sequences which efficiently lower-bounds the Euclidean distance between the corresponding channel signal sequences, a search procedure for more powerful codes is developed. Codes with coding gains up to 6 dB are obtained for a variety of multilevel/phase modulation schemes. Simulation results are presented and an example of carrier-phase tracking is discussed.

read more

Citations
More filters
Journal ArticleDOI

Discrete multiple tone modulation with coset coding for the spectrally shaped channel

TL;DR: A discrete approach to multiple tone modulation is developed for digital communication channels with arbitrary intersymbol interference (ISI) and additive Gaussian noise that is linear in both the modulation and the demodulation, and is free from the effects of error propagation.
Proceedings ArticleDOI

Super-orthogonal space-time trellis codes

TL;DR: These codes combine set partitioning and a super set of orthogonal space-time block codes in a systematic way to provide full diversity and improved coding gain over earlier space- time trellis code constructions.
Patent

Multi-channel trellis encoder/decoder

TL;DR: In this article, a multi-channel trellis encoder/decoder was proposed for multichannel data transmission systems, and the authors demonstrated that the proposed scheme can reduce data throughput delays by roughly an order of magnitude, and reduce implementation complexity by roughly a factor equal to the number of transmission channels.
Journal ArticleDOI

The design of trellis coded MPSK for fading channels: set partitioning for optimum code design

TL;DR: It is demonstrated that allowing for multiple symbols per trellis branch provides an additional degree of freedom for designing a code to meet the optimization on the fading channel.
Journal ArticleDOI

Trellis precoding: combined coding, precoding and shaping for intersymbol interference channels

TL;DR: Trellis precoding channel capacity can be approached essentially as closely on any strictly bandlimited, high signal-to-noise ratio Gaussian channel as on the ideal channel, using the same coding techniques.
References
More filters
Book

Information Theory and Reliable Communication

TL;DR: This chapter discusses Coding for Discrete Sources, Techniques for Coding and Decoding, and Source Coding with a Fidelity Criterion.
Journal ArticleDOI

The viterbi algorithm

TL;DR: This paper gives a tutorial exposition of the Viterbi algorithm and of how it is implemented and analyzed, and increasing use of the algorithm in a widening variety of areas is foreseen.
Book

Principles of Communication Engineering

TL;DR: Textbook on communication engineering emphasizing random processes, information and detection theory, statistical communication theory, applications, etc.
Journal ArticleDOI

Convolutional codes I: Algebraic structure

TL;DR: Minimal encoders are shown to be immune to catastrophic error propagation and, in fact, to lead in a certain sense to the shortest decoded error sequences possible per error event.
Journal ArticleDOI

Coherent and Noncoherent Detection CPFSK

TL;DR: This work provides a complete analysis of the performance of CPFSK at high SNR as well as low SNR and thereby unifies and extends the results previously available.