scispace - formally typeset
Open AccessJournal ArticleDOI

Choosing Multiple Parameters for Support Vector Machines

TLDR
The problem of automatically tuning multiple parameters for pattern recognition Support Vector Machines (SVMs) is considered by minimizing some estimates of the generalization error of SVMs using a gradient descent algorithm over the set of parameters.
Abstract
The problem of automatically tuning multiple parameters for pattern recognition Support Vector Machines (SVMs) is considered. This is done by minimizing some estimates of the generalization error of SVMs using a gradient descent algorithm over the set of parameters. Usual methods for choosing parameters, based on exhaustive search become intractable as soon as the number of parameters exceeds two. Some experimental results assess the feasibility of our approach for a large number of parameters (more than 100) and demonstrate an improvement of generalization performance.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Wrapper–Filter Feature Selection Algorithm Using a Memetic Framework

TL;DR: This correspondence presents a novel hybrid wrapper and filter feature selection algorithm for a classification problem using a memetic framework that incorporates a filter ranking method in the traditional genetic algorithm to improve classification performance and accelerate the search in identifying the core feature subsets.
Journal ArticleDOI

Evolutionary tuning of multiple SVM parameters

TL;DR: It is demonstrated on benchmark datasets that the CMA-ES improves the results achieved by grid search already when applied to few hyperparameters and that tuning of the scaling and the rotation of Gaussian kernel can lead to better results in comparison to standard Gaussian kernels with a single bandwidth parameter.
Journal ArticleDOI

l p -Norm Multiple Kernel Learning

TL;DR: Empirical applications of lp-norm MKL to three real-world problems from computational biology show that non-sparse MKL achieves accuracies that surpass the state-of-the-art, and two efficient interleaved optimization strategies for arbitrary norms are developed.
Journal ArticleDOI

Toward an Optimal SVM Classification System for Hyperspectral Remote Sensing Images

TL;DR: This paper proposes a classification system based on a genetic optimization framework formulated in such a way as to detect the best discriminative features without requiring the a priori setting of their number by the user and to estimate the best SVM parameters in a completely automatic way.
Journal ArticleDOI

Efficient leave-one-out cross-validation of kernel Fisher discriminant classifiers

TL;DR: It is shown that leave-one-out cross-validation of kernel Fisher discriminant classifiers can be implemented with a computational complexity of only O (l 3 ) operations rather than the O ( l 4 ) of a naive implementation, where l is the number of training patterns.
References
More filters
Book

The Nature of Statistical Learning Theory

TL;DR: Setting of the learning problem consistency of learning processes bounds on the rate of convergence ofLearning processes controlling the generalization ability of learning process constructing learning algorithms what is important in learning theory?
Journal ArticleDOI

Support-Vector Networks

TL;DR: High generalization ability of support-vector networks utilizing polynomial input transformations is demonstrated and the performance of the support- vector network is compared to various classical learning algorithms that all took part in a benchmark study of Optical Character Recognition.

Statistical learning theory

TL;DR: Presenting a method for determining the necessary and sufficient conditions for consistency of learning process, the author covers function estimates from small data pools, applying these estimations to real-life problems, and much more.
Book

An Introduction to Support Vector Machines and Other Kernel-based Learning Methods

TL;DR: This is the first comprehensive introduction to Support Vector Machines (SVMs), a new generation learning system based on recent advances in statistical learning theory, and will guide practitioners to updated literature, new applications, and on-line software.
Journal ArticleDOI

Molecular classification of cancer: class discovery and class prediction by gene expression monitoring.

TL;DR: A generic approach to cancer classification based on gene expression monitoring by DNA microarrays is described and applied to human acute leukemias as a test case and suggests a general strategy for discovering and predicting cancer classes for other types of cancer, independent of previous biological knowledge.