scispace - formally typeset
Journal ArticleDOI

Communication via One- and Two-Particle Operators on Einstein-Podolsky-Rosen States

Charles H. Bennett, +1 more
- 16 Nov 1992 - 
- Vol. 69, Iss: 20, pp 2881-2884
TLDR
The set of states accessible from an initial EPR state by one-particle operations are characterized and it is shown that in a sense they allow two bits to be encoded reliably in one spin-1/2 particle.
Abstract
As is well known, operations on one particle of an Einstein-Podolsky-Rosen (EPR) pair cannot influence the marginal statistics of measurements on the other particle. We characterize the set of states accessible from an initial EPR state by one-particle operations and show that in a sense they allow two bits to be encoded reliably in one spin-1/2 particle: One party, ``Alice,'' prepares an EPR pair and sends one of the particles to another party, ``Bob,'' who applies one of four unitary operators to the particle, and then returns it to Alice. By measuring the two particles jointly, Alice can now reliably learn which operator Bob used.

read more

Citations
More filters

Quantum Computation and Quantum Information

TL;DR: This chapter discusses quantum information theory, public-key cryptography and the RSA cryptosystem, and the proof of Lieb's theorem.
Journal ArticleDOI

Quantum entanglement

TL;DR: In this article, the basic aspects of entanglement including its characterization, detection, distillation, and quantification are discussed, and a basic role of entonglement in quantum communication within distant labs paradigm is discussed.
Journal ArticleDOI

Mixed State Entanglement and Quantum Error Correction

TL;DR: It is proved that an EPP involving one-way classical communication and acting on mixed state M (obtained by sharing halves of Einstein-Podolsky-Rosen pairs through a channel) yields a QECC on \ensuremath{\chi} with rate Q=D, and vice versa, and it is proved Q is not increased by adding one- way classical communication.
Journal ArticleDOI

Quantum information and computation

TL;DR: In information processing, as in physics, the classical world view provides an incomplete approximation to an underlying quantum reality that can be harnessed to break codes, create unbreakable codes, and speed up otherwise intractable computations.
Journal ArticleDOI

Quantum Information with Continuous Variables

TL;DR: In this article, the authors present the Deutsch-Jozsa algorithm for continuous variables, and a deterministic version of it is used for quantum information processing with continuous variables.
Related Papers (5)