scispace - formally typeset
Open AccessPosted Content

Cross-Age LFW: A Database for Studying Cross-Age Face Recognition in Unconstrained Environments

Reads0
Chats0
TLDR
A Cross-Age LFW is constructed which deliberately searches and selects 3,000 positive face pairs with age gaps to add aging process intra-class variance and evaluate several metric learning and deep learning methods on the new database.
Abstract
Labeled Faces in the Wild (LFW) database has been widely utilized as the benchmark of unconstrained face verification and due to big data driven machine learning methods, the performance on the database approaches nearly 100%. However, we argue that this accuracy may be too optimistic because of some limiting factors. Besides different poses, illuminations, occlusions and expressions, cross-age face is another challenge in face recognition. Different ages of the same person result in large intra-class variations and aging process is unavoidable in real world face verification. However, LFW does not pay much attention on it. Thereby we construct a Cross-Age LFW (CALFW) which deliberately searches and selects 3,000 positive face pairs with age gaps to add aging process intra-class variance. Negative pairs with same gender and race are also selected to reduce the influence of attribute difference between positive/negative pairs and achieve face verification instead of attributes classification. We evaluate several metric learning and deep learning methods on the new database. Compared to the accuracy on LFW, the accuracy drops about 10%-17% on CALFW.

read more

Citations
More filters
Proceedings ArticleDOI

ArcFace: Additive Angular Margin Loss for Deep Face Recognition

TL;DR: This paper presents arguably the most extensive experimental evaluation against all recent state-of-the-art face recognition methods on ten face recognition benchmarks, and shows that ArcFace consistently outperforms the state of the art and can be easily implemented with negligible computational overhead.
Posted Content

ArcFace: Additive Angular Margin Loss for Deep Face Recognition

TL;DR: This article proposed an additive angular margin loss (ArcFace) to obtain highly discriminative features for face recognition, which has a clear geometric interpretation due to the exact correspondence to the geodesic distance on the hypersphere.
Journal ArticleDOI

Deep face recognition: A survey

TL;DR: A comprehensive review of the recent developments on deep face recognition can be found in this paper, covering broad topics on algorithm designs, databases, protocols, and application scenes, as well as the technical challenges and several promising directions.
Proceedings ArticleDOI

CurricularFace: Adaptive Curriculum Learning Loss for Deep Face Recognition

TL;DR: This work proposes a novel Adaptive Curriculum Learning loss (CurricularFace) that embeds the idea of curriculum learning into the loss function to achieve a novel training strategy for deep face recognition, which mainly addresses easy samples in the early training stage and hard ones in the later stage.
Proceedings ArticleDOI

MagFace: A Universal Representation for Face Recognition and Quality Assessment

TL;DR: MagFace as discussed by the authors introduces an adaptive mechanism to learn a well-structured within-class feature distributions by pulling easy samples to class centers while pushing hard samples away, which prevents models from overfitting on noisy low-quality samples and improves face recognition in the wild.
References
More filters
Journal ArticleDOI

Image quality assessment: from error visibility to structural similarity

TL;DR: In this article, a structural similarity index is proposed for image quality assessment based on the degradation of structural information, which can be applied to both subjective ratings and objective methods on a database of images compressed with JPEG and JPEG2000.
Journal ArticleDOI

Support-Vector Networks

TL;DR: High generalization ability of support-vector networks utilizing polynomial input transformations is demonstrated and the performance of the support- vector network is compared to various classical learning algorithms that all took part in a benchmark study of Optical Character Recognition.
Proceedings ArticleDOI

FaceNet: A unified embedding for face recognition and clustering

TL;DR: A system that directly learns a mapping from face images to a compact Euclidean space where distances directly correspond to a measure offace similarity, and achieves state-of-the-art face recognition performance using only 128-bytes perface.
Proceedings ArticleDOI

DeepFace: Closing the Gap to Human-Level Performance in Face Verification

TL;DR: This work revisits both the alignment step and the representation step by employing explicit 3D face modeling in order to apply a piecewise affine transformation, and derive a face representation from a nine-layer deep neural network.

Labeled Faces in the Wild: A Database forStudying Face Recognition in Unconstrained Environments

TL;DR: The database contains labeled face photographs spanning the range of conditions typically encountered in everyday life, and exhibits “natural” variability in factors such as pose, lighting, race, accessories, occlusions, and background.
Related Papers (5)