scispace - formally typeset
Journal ArticleDOI

Crystal engineering: from molecule to crystal.

Reads0
Chats0
TLDR
This Perspective provides a brief historical introduction to crystal engineering itself and an assessment of the importance and utility of the supramolecular synthon, which is one of the most important concepts in the practical use and implementation of crystal design.
Abstract
How do molecules aggregate in solution, and how do these aggregates consolidate themselves in crystals? What is the relationship between the structure of a molecule and the structure of the crystal it forms? Why do some molecules adopt more than one crystal structure? Why do some crystal structures contain solvent? How does one design a crystal structure with a specified topology of molecules, or a specified coordination of molecules and/or ions, or with a specified property? What are the relationships between crystal structures and properties for molecular crystals? These are some of the questions that are being addressed today by the crystal engineering community, a group that draws from the larger communities of organic, inorganic, and physical chemists, crystallographers, and solid state scientists. This Perspective provides a brief historical introduction to crystal engineering itself and an assessment of the importance and utility of the supramolecular synthon, which is one of the most important concepts in the practical use and implementation of crystal design. It also provides a look to the future from the viewpoint of the author, and indicates some directions in which this field might be moving.

read more

Citations
More filters
Journal ArticleDOI

The Cambridge Structural Database in retrospect and prospect.

TL;DR: The origins of the CCDC are traced, the growth of the CSD and its extensive associated software system are described, and its impact and value are summarized as a basis for research in structural chemistry, materials science and the life sciences, including drug discovery and drug development.
Journal ArticleDOI

Energy frameworks: insights into interaction anisotropy and the mechanical properties of molecular crystals

TL;DR: This approach is applied to a sample of organic molecular crystals with known bending, shearing and brittle behaviour, to illustrate its use in rationalising their mechanical behaviour at a molecular level.
Journal ArticleDOI

The Green ChemisTREE: 20 years after taking root with the 12 principles

TL;DR: The Green ChemisTrees as discussed by the authors is a showcase for the diversity of research and achievements stemming from green chemistry, inspired by tree diagrams that illustrate diversity of products stemming from raw materials.
Journal ArticleDOI

Predicting crystal structures of organic compounds

TL;DR: Currently, organic crystal structure prediction (CSP) methods are based on searching for the most thermodynamically stable crystal structure, making various approximations in evaluating the crystal energy.
References
More filters
Journal ArticleDOI

Functional porous coordination polymers.

TL;DR: The aim is to present the state of the art chemistry and physics of and in the micropores of porous coordination polymers, and the next generation of porous functions based on dynamic crystal transformations caused by guest molecules or physical stimuli.
Journal ArticleDOI

Selective gas adsorption and separation in metal–organic frameworks

TL;DR: This critical review starts with a brief introduction to gas separation and purification based on selective adsorption, followed by a review of gas selective adsorbents in rigid and flexible MOFs, and primary relationships between adsorptive properties and framework features are analyzed.
Journal ArticleDOI

The hydrogen bond in the solid state.

TL;DR: The hydrogen bond is the most important of all directional intermolecular interactions, operative in determining molecular conformation, molecular aggregation, and the function of a vast number of chemical systems ranging from inorganic to biological.
Journal ArticleDOI

Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks.

TL;DR: Consideration of the geometric and chemical attributes of the SBUs and linkers leads to prediction of the framework topology, and in turn to the design and synthesis of a new class of porous materials with robust structures and high porosity.
Related Papers (5)