scispace - formally typeset
Journal ArticleDOI

Depolymerization of Cellulose Using Solid Catalysts in Ionic Liquids

Roberto Rinaldi, +2 more
- 06 Oct 2008 - 
- Vol. 47, Iss: 42, pp 8047-8050
About
This article is published in Angewandte Chemie.The article was published on 2008-10-06. It has received 542 citations till now. The article focuses on the topics: Depolymerization & Heterogeneous catalysis.

read more

Citations
More filters
Journal ArticleDOI

Ionic liquids and catalysis: Recent progress from knowledge to applications

TL;DR: In this paper, a survey on the latest most representative developments and progress concerning ionic liquids, from their fundamental properties to their applications in catalytic processes, is presented, highlighting their emerging use for biomass treatment and transformation.
Journal ArticleDOI

Paving the Way for Lignin Valorisation: Recent Advances in Bioengineering, Biorefining and Catalysis.

TL;DR: This review provides a “beginning‐to‐end” analysis of the recent advances reported in lignin valorisation, with particular emphasis on the improved understanding of lign in's biosynthesis and structure.
Journal ArticleDOI

Hemicelluloses for fuel ethanol: A review.

TL;DR: The various hemicelluloses structures present in lignocellulose, the range of pre-treatment and hydrolysis options including the enzymatic ones, and the role of different microbial strains on process integration aiming to reach a meaningful consolidated bioprocessing are reviewed.
Journal ArticleDOI

Deconstruction of lignocellulosic biomass with ionic liquids

TL;DR: In this article, the application of ionic liquids to the deconstruction and fractionation of lignocellulosic biomass, in a process step that is commonly called pretreatment, is discussed.
Journal ArticleDOI

Green and sustainable manufacture of chemicals from biomass: state of the art

TL;DR: In this article, various strategies for the valorisation of waste biomass to platform chemicals, and the underlying developments in chemical and biological catalysis which make this possible, are critically reviewed, and three possible routes for producing a bio-based equivalent of the large volume polymer, polyethylene terephthalate (PET) are delineated.
References
More filters
Journal ArticleDOI

Cellulose: Fascinating Biopolymer and Sustainable Raw Material

TL;DR: The current knowledge in the structure and chemistry of cellulose, and in the development of innovative cellulose esters and ethers for coatings, films, membranes, building materials, drilling techniques, pharmaceuticals, and foodstuffs are assembled.
Journal ArticleDOI

Chemical Routes for the Transformation of Biomass into Chemicals

TL;DR: Dehydroisomerization of Limonene and Terpenes To Produce Cymene 2481 4.2.1.
Journal ArticleDOI

Dissolution of Cellose with Ionic Liquids

TL;DR: In this paper, the authors demonstrate that cellulose can be dissolved without activation or pretreatment in, and regenerated from, 1-butyl-3-methylimidazolium chloride and other hydrophilic ionic liquids.
Journal ArticleDOI

Mechanisms of catalyst deactivation

TL;DR: The literature treating mechanisms of catalyst deactivation is reviewed in this paper, which can be classified into six distinct types: (i) poisoning, (ii) fouling, (iii) thermal degradation, (iv) vapor compound formation accompanied by transport, (v) vapor solid and/or solid solid reactions, and (vi) attrition/crushing.
Journal ArticleDOI

Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates

TL;DR: This catalytic strategy for the production of 2,5-dimethylfuran from fructose (a carbohydrate obtained directly from biomass or by the isomerization of glucose) for use as a liquid transportation fuel may diminish the authors' reliance on petroleum.
Related Papers (5)