scispace - formally typeset
Journal ArticleDOI

Design and construction of a realistic digital brain phantom

Reads0
Chats0
TLDR
The authors present a realistic, high-resolution, digital, volumetric phantom of the human brain, which can be used to simulate tomographic images of the head and is the ideal tool to test intermodality registration algorithms.
Abstract
After conception and implementation of any new medical image processing algorithm, validation is an important step to ensure that the procedure fulfils all requirements set forth at the initial design stage. Although the algorithm must be evaluated on real data, a comprehensive validation requires the additional use of simulated data since it is impossible to establish ground truth with in vivo data. Experiments with simulated data permit controlled evaluation over a wide range of conditions (e.g., different levels of noise, contrast, intensity artefacts, or geometric distortion). Such considerations have become increasingly important with the rapid growth of neuroimaging, i.e., computational analysis of brain structure and function using brain scanning methods such as positron emission tomography and magnetic resonance imaging. Since simple objects such as ellipsoids or parallelepipedes do not reflect the complexity of natural brain anatomy, the authors present the design and creation of a realistic, high-resolution, digital, volumetric phantom of the human brain. This three-dimensional digital brain phantom is made up of ten volumetric data sets that define the spatial distribution for different tissues (e.g., grey matter, white matter, muscle, skin, etc.), where voxel intensity is proportional to the fraction of tissue within the voxel. The digital brain phantom can be used to simulate tomographic images of the head. Since the contribution of each tissue type to each voxel in the brain phantom is known, it can be used as the gold standard to test analysis algorithms such as classification procedures which seek to identify the tissue "type" of each image voxel. Furthermore, since the same anatomical phantom may be used to drive simulators for different modalities, it is the ideal tool to test intermodality registration algorithms. The brain phantom and simulated MR images have been made publicly available on the Internet (http://www.bic.mni.mcgill.ca/brainweb).

read more

Citations
More filters
Journal ArticleDOI

In silico modelling of tumour margin diffusion and infiltration: review of current status.

TL;DR: Stochastic models are found to be more promising to provide a realistic description of cancer tumour behaviour due to being intrinsically probabilistic as well as discrete, which enables incorporation of patient-specific biomedical data such as tumour heterogeneity and anatomical boundaries.
Proceedings ArticleDOI

Automatic skull stripping in MRI based on morphological filters and fuzzy c-means segmentation

TL;DR: A new automatic skull stripping method for T1-weighted MR image of human brain is presented, based on a 2D brain extraction making use of fuzzy c-means segmentation and morphological operators applied on transversal slices to solve the organ splitting problem.
Journal ArticleDOI

Magnetic resonance image tissue classification using an automatic method

TL;DR: This paper presents a simple and more accurate automated technique for brain segmentation into White Matter, Gray Matter and Cerebrospinal fluid in three-dimensional MR images using SVM, which has been validated on real images and simulated data.
Journal ArticleDOI

The integration of real and virtual magnetic resonance imaging experiments in a single instrument

TL;DR: The design of an integrated system for performing both real and virtual (simulated) magnetic resonance imaging (MRI) experiments is presented and the operation of the system is demonstrated for T(1), T(2) ( *), and diffusion contrasts.
Proceedings ArticleDOI

An energy-based framework for dense 3D registration of volumetric brain images

TL;DR: An anatomical segmentation of the cortex is introduced in the adaptive partitioning of the volume on which the multigrid minimization is based, allowing to limit the estimation to the areas of interest, to accelerate the algorithm, and to refine the estimation in specified areas.
References
More filters
Book

Pattern Recognition with Fuzzy Objective Function Algorithms

TL;DR: Books, as a source that may involve the facts, opinion, literature, religion, and many others are the great friends to join with, becomes what you need to get.
Book

Co-planar stereotaxic atlas of the human brain : 3-dimensional proportional system : an approach to cerebral imaging

TL;DR: Direct and Indirect Radiologic Localization Reference System: Basal Brain Line CA-CP Cerebral Structures in Three-Dimensional Space Practical Examples for the Use of the Atlas in Neuroradiologic Examinations Three- Dimensional Atlas of a Human Brain Nomenclature-Abbreviations Anatomic Index Conclusions.
Journal ArticleDOI

A nonparametric method for automatic correction of intensity nonuniformity in MRI data

TL;DR: A novel approach to correcting for intensity nonuniformity in magnetic resonance (MR) data is described that achieves high performance without requiring a model of the tissue classes present, and is applied at an early stage in an automated data analysis, before a tissue model is available.
Journal ArticleDOI

Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space

TL;DR: A fully automatic registration method to map volumetric data into stereotaxic space that yields results comparable with those of manually based techniques and therefore does not suffer the drawbacks involved in user intervention.
Book

Introduction to artificial neural systems

TL;DR: Jacek M. Zurada is a Professor with the Electrical and Computer Engineering Department at the University of Louisville, Kentucky and has published over 350 journal and conference papers in the areas of neural networks, computational intelligence, data mining, image processing and VLSI circuits.
Related Papers (5)