scispace - formally typeset
Journal ArticleDOI

Design and construction of a realistic digital brain phantom

Reads0
Chats0
TLDR
The authors present a realistic, high-resolution, digital, volumetric phantom of the human brain, which can be used to simulate tomographic images of the head and is the ideal tool to test intermodality registration algorithms.
Abstract
After conception and implementation of any new medical image processing algorithm, validation is an important step to ensure that the procedure fulfils all requirements set forth at the initial design stage. Although the algorithm must be evaluated on real data, a comprehensive validation requires the additional use of simulated data since it is impossible to establish ground truth with in vivo data. Experiments with simulated data permit controlled evaluation over a wide range of conditions (e.g., different levels of noise, contrast, intensity artefacts, or geometric distortion). Such considerations have become increasingly important with the rapid growth of neuroimaging, i.e., computational analysis of brain structure and function using brain scanning methods such as positron emission tomography and magnetic resonance imaging. Since simple objects such as ellipsoids or parallelepipedes do not reflect the complexity of natural brain anatomy, the authors present the design and creation of a realistic, high-resolution, digital, volumetric phantom of the human brain. This three-dimensional digital brain phantom is made up of ten volumetric data sets that define the spatial distribution for different tissues (e.g., grey matter, white matter, muscle, skin, etc.), where voxel intensity is proportional to the fraction of tissue within the voxel. The digital brain phantom can be used to simulate tomographic images of the head. Since the contribution of each tissue type to each voxel in the brain phantom is known, it can be used as the gold standard to test analysis algorithms such as classification procedures which seek to identify the tissue "type" of each image voxel. Furthermore, since the same anatomical phantom may be used to drive simulators for different modalities, it is the ideal tool to test intermodality registration algorithms. The brain phantom and simulated MR images have been made publicly available on the Internet (http://www.bic.mni.mcgill.ca/brainweb).

read more

Citations
More filters
Proceedings Article

Image segmentation

TL;DR: An axiomatic definition for the notion of "segmentation" in image processing is proposed, which is based on the idea of a maximal partition and a key theorem links segmentation with connection, on the one hand, and with connective criteria on the other one.
Journal ArticleDOI

Comparison and validation of tissue modelization and statistical classification methods in T1-weighted MR brain images

TL;DR: A validation study on statistical nonsupervised brain tissue classification techniques in magnetic resonance (MR) images demonstrates that methods relying on both intensity and spatial information are more robust to noise and field inhomogeneities and shows that simulated data results can be extended to real data.
Journal ArticleDOI

Time domain functional NIRS imaging for human brain mapping

TL;DR: This review is aimed at presenting the state-of-the-art of time domain (TD) functional near-infrared spectroscopy (fNIRS) by introducing the physical principles, the basics of modeling and data analysis, and the technological developments that would pave the way for a broader use of TD fNirS in the neuroimaging community.
Journal ArticleDOI

Political orientations are correlated with brain structure in young adults

TL;DR: These findings extend previous observations that political attitudes reflect differences in self-regulatory conflict monitoring and recognition of emotional faces by showing that such attitudes are reflected in human brain structure.
Journal ArticleDOI

Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task.

TL;DR: It is suggested that a major part of the task-related changes in the oxyHb concentration in the forehead is due to task- relatedChanges in the skin blood flow, which is under different autonomic control than heart rate.
References
More filters
Book

Pattern Recognition with Fuzzy Objective Function Algorithms

TL;DR: Books, as a source that may involve the facts, opinion, literature, religion, and many others are the great friends to join with, becomes what you need to get.
Book

Co-planar stereotaxic atlas of the human brain : 3-dimensional proportional system : an approach to cerebral imaging

TL;DR: Direct and Indirect Radiologic Localization Reference System: Basal Brain Line CA-CP Cerebral Structures in Three-Dimensional Space Practical Examples for the Use of the Atlas in Neuroradiologic Examinations Three- Dimensional Atlas of a Human Brain Nomenclature-Abbreviations Anatomic Index Conclusions.
Journal ArticleDOI

A nonparametric method for automatic correction of intensity nonuniformity in MRI data

TL;DR: A novel approach to correcting for intensity nonuniformity in magnetic resonance (MR) data is described that achieves high performance without requiring a model of the tissue classes present, and is applied at an early stage in an automated data analysis, before a tissue model is available.
Journal ArticleDOI

Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space

TL;DR: A fully automatic registration method to map volumetric data into stereotaxic space that yields results comparable with those of manually based techniques and therefore does not suffer the drawbacks involved in user intervention.
Book

Introduction to artificial neural systems

TL;DR: Jacek M. Zurada is a Professor with the Electrical and Computer Engineering Department at the University of Louisville, Kentucky and has published over 350 journal and conference papers in the areas of neural networks, computational intelligence, data mining, image processing and VLSI circuits.
Related Papers (5)