scispace - formally typeset

Proceedings ArticleDOI

E-MiLi: energy-minimizing idle listening in wireless networks

19 Sep 2011-pp 205-216

TL;DR: E-MiLi employs an opportunistic downclocking mechanism to optimize the efficiency of switching clock rate, based on a simple interface to existing MAC-layer scheduling protocols, and can detect packets with close to 100 percent accuracy on the USRP software radio platform.

AbstractWiFi interface is known to be a primary energy consumer in mobile devices, and idle listening (IL) is the dominant source of energy consumption in WiFi. Most existing protocols, such as the 802.11 power-saving mode (PSM), attempt to reduce the time spent in IL by sleep scheduling. However, through an extensive analysis of real-world traffic, we found more than 60% of energy is consumed in IL, even with PSM enabled. To remedy this problem, we propose E-MiLi (Energy-Minimizing idle Listening) that reduces the power consumption in IL, given that the time spent in IL has already been optimized by sleep scheduling. Observing that radio power consumption decreases proportionally to its clock-rate, E-MiLi adaptively downclocks the radio during IL, and reverts to full clock-rate when an incoming packet is detected or a packet has to be transmitted. E-MiLi incorporates sampling rate invariant detection, ensuring accurate packet detection and address filtering even when the receiver's sampling clock-rate is much lower than the signal bandwidth. Further, it employs an opportunistic downclocking mechanism to optimize the efficiency of switching clock-rate, based on a simple interface to existing MAC-layer scheduling protocols. We have implemented E-MiLi on the USRP software radio platform. Our experimental evaluation shows that E-MiLi can detect packets with close to 100% accuracy even with downclocking by a factor of 16. When integrated with 802.11, E-MiLi can reduce energy consumption by around 44% for 92% of users in real-world wireless networks.

Topics: Energy consumption (58%), Network packet (52%), Efficient energy use (52%), Wireless network (52%), Software-defined radio (51%)

...read more

Content maybe subject to copyright    Report

Citations
More filters

Proceedings ArticleDOI
07 Aug 2018
TL;DR: PLoRa takes ambient LoRa transmissions as the excitation signals, conveys data by modulating an excitation signal into a new standard LoRa "chirp" signal, and shifts this new signal to a different LoRa channel to be received at a gateway faraway.
Abstract: This paper presents PLoRa, an ambient backscatter design that enables long-range wireless connectivity for batteryless IoT devices. PLoRa takes ambient LoRa transmissions as the excitation signals, conveys data by modulating an excitation signal into a new standard LoRa "chirp" signal, and shifts this new signal to a different LoRa channel to be received at a gateway faraway. PLoRa achieves this by a holistic RF front-end hardware and software design, including a low-power packet detection circuit, a blind chirp modulation algorithm and a low-power energy management circuit. To form a complete ambient LoRa backscatter network, we integrate a light-weight backscatter signal decoding algorithm with a MAC-layer protocol that work together to make coexistence of PLoRa tags and active LoRa nodes possible in the network. We prototype PLoRa on a four-layer printed circuit board, and test it in various outdoor and indoor environments. Our experimental results demonstrate that our prototype PCB PLoRa tag can backscatter an ambient LoRa transmission sent from a nearby LoRa node (20 cm away) to a gateway up to 1.1 km away, and deliver 284 bytes data every 24 minutes indoors, or every 17 minutes outdoors. We also simulate a 28-nm low-power FPGA based prototype whose digital baseband processor achieves 220 μW power consumption.

134 citations


Cites background from "E-MiLi: energy-minimizing idle list..."

  • ...We reduce the sampling rate for packet detection because its power consumption decreases monotonically with the sampling rate [50]....

    [...]


Proceedings ArticleDOI
14 Apr 2013
TL;DR: Gap Sense (GSense) is introduced, a novel mechanism that can coordinate heterogeneous devices without modifying their PHYlayer modulation schemes or spectrum widths and is shown to deliver coordination information with close to 100% accuracy within practical SNR regions.
Abstract: Coordination of co-located wireless devices is a fundamental function/requirement for reducing interference. However, different devices cannot directly coordinate with one another as they often use incompatible modulation schemes. Even for the same type (e.g., WiFi) of devices, their coordination is infeasible when neighboring transmitters adopt different spectrum widths. Such an incompatibility between heterogeneous devices may severely degrade the network performance. In this paper, we introduce Gap Sense (GSense), a novel mechanism that can coordinate heterogeneous devices without modifying their PHYlayer modulation schemes or spectrum widths. GSense prepends legacy packets with a customized preamble, which piggy-backs information to enhance inter-device coordination. The preamble leverages the quiet period between signal pulses to convey such information, and can be detected by neighboring nodes even when they have incompatible PHY layers. We have implemented and evaluated GSense on a software radio platform, demonstrating its significance and utility in three popular protocols. GSense is shown to deliver coordination information with close to 100% accuracy within practical SNR regions. It can also reduce the energy consumption by around 44%, and the collision rate by more than 88% in networks of heterogeneous transmitters and receivers.

115 citations


Proceedings ArticleDOI
07 Sep 2015
TL;DR: The experimental study gives encouraging results that BiGroup greatly improves RFID communication efficiency, i.e., 11× performance improvement compared to the alternative decoding scheme for COTS tags and 6× gain in time efficiency when applied to EPC C1G2 tag identification.
Abstract: Current commodity RFID systems incur high communication overhead due to severe tag-to-tag collisions. Although some recent works have been proposed to support parallel decoding for concurrent tag transmissions, they require accurate channel measurements, tight tag synchronization, or modifications to standard RFID tag operations. In this paper, we present BiGroup, a novel RFID communication paradigm that allows the reader to decode the collision from multiple COTS (commodity-off-the-shelf) RFID tags in one communication round. In BiGroup, COTS tags can directly join ongoing communication sessions and get decoded in parallel. The collision resolution intelligence is solely put at the reader side. To this end, BiGroup examines the tag collisions at RFID physical layer from constellation domain as well as time domain, exploits the under-utilized channel capacity due to low tag transmission rate, and leverages tag diversities. We implement BiGroup with USRP N210 software radio that is able to read and decode multiple concurrent transmissions from COTS passive tags. Our experimental study gives encouraging results that BiGroup greatly improves RFID communication efficiency, i.e., 11× performance improvement compared to the alternative decoding scheme for COTS tags and 6× gain in time efficiency when applied to EPC C1G2 tag identification.

98 citations


Cites methods from "E-MiLi: energy-minimizing idle list..."

  • ..., using preambles [3, 16, 39] or coordinated transmissions [31, 34]) to understand channel coefficients of individual tags....

    [...]


Journal ArticleDOI
TL;DR: A survey on the universal energy estimation model for mobile devices is presented to provide a comprehensive summary of recent work on transmission energy savings.
Abstract: The emergence of mobile cloud computing (MCC) indicates that increasingly abundant applications are available, thus deeming energy problems even more significant. To achieve energy optimization in mobile systems, power consumption involved with each component or application need to be estimated prior to execution. In this paper, we present a survey on the universal energy estimation model for mobile devices. Additionally, due to the significance of wireless network interface card (WNIC) in the power use of mobile devices, considerable researches have been devoted to a low-power design of the WNIC (i.e., Cellular and WiFi). These efforts have allowed us to provide a comprehensive summary of recent work on transmission energy savings. Finally, we conclude the survey and discuss the future research directions.

78 citations


Journal ArticleDOI
TL;DR: This paper presents potential techniques that can be applied for HEWs, in order to achieve the required performance in dense HEW deployment scenarios, as expected in the near future.
Abstract: The emerging paradigm of the Internet of Everything, along with the increasing demand of Internet services everywhere, results in a remarkable and continuous growth of the global Internet traffic. As a cost-effective Internet access solution, WiFi networks currently generate a major portion of the global Internet traffic. Furthermore, the number of WiFi public hotspots worldwide is expected to increase by more than sevenfold by 2018. To face this huge increase in the number of densely deployed WiFi networks, and the massive amount of data to be supported by these networks in indoor and outdoor environments, it is necessary to improve the current WiFi standard and define specifications for high efficiency wireless local area networks (HEWs). This paper presents potential techniques that can be applied for HEWs, in order to achieve the required performance in dense HEW deployment scenarios, as expected in the near future. The HEW solutions under consideration includes physical layer techniques, medium access control layer strategies, spatial frequency reuse schemes, and power saving mechanisms. To accurately assess a newly proposed HEW scheme, we discuss suitable evaluation methodologies, by defining simulation scenarios that represent future HEW usage models, performance metrics that reflect HEW user experience, traffic models for dominant HEW applications, and channel models for indoor and outdoor HEW deployments. Finally, we highlight open issues for future HEW research and development.

78 citations


References
More filters

Journal Article
Abstract: This paper proposes S-MAC, a medium-access control (MAC) protocol designed for wireless sensor networks. Wireless sensor networks use battery-operated computing and sensing devices. A network of these devices will collaborate for a common application such as environmental monitoring. We expect sensor networks to be deployed in an ad hoc fashion, with individual nodes remaining largely inactive for long periods of time, but then becoming suddenly active when something is detected. These characteristics of sensor networks and applications motivate a MAC that is different from traditional wireless MACs such as IEEE 802.11 in almost every way: energy conservation and self-configuration are primary goals, while per-node fairness and latency are less important. S-MAC uses three novel techniques to reduce energy consumption and support self-configuration. To reduce energy consumption in listening to an idle channel, nodes periodically sleep. Neighboring nodes form virtual clusters to auto-synchronize on sleep schedules. Inspired by PAMAS, S-MAC also sets the radio to sleep during transmissions of other nodes. Unlike PAMAS, it only uses in-channel signaling. Finally, S-MAC applies message passing to reduce contention latency for sensor-network applications that require store-and-forward processing as data move through the network. We evaluate our implementation of S-MAC over a sample sensor node, the Mote, developed at University of California, Berkeley. The experiment results show that, on a source node, an 802.11-like MAC consumes 2–6 times more energy than S-MAC for traffic load with messages sent every 1–10s.

5,311 citations


Proceedings ArticleDOI
07 Nov 2002
TL;DR: S-MAC uses three novel techniques to reduce energy consumption and support self-configuration, and applies message passing to reduce contention latency for sensor-network applications that require store-and-forward processing as data move through the network.
Abstract: This paper proposes S-MAC, a medium-access control (MAC) protocol designed for wireless sensor networks Wireless sensor networks use battery-operated computing and sensing devices A network of these devices will collaborate for a common application such as environmental monitoring We expect sensor networks to be deployed in an ad hoc fashion, with individual nodes remaining largely inactive for long periods of time, but then becoming suddenly active when something is detected These characteristics of sensor networks and applications motivate a MAC that is different from traditional wireless MACs such as IEEE 80211 in almost every way: energy conservation and self-configuration are primary goals, while per-node fairness and latency are less important S-MAC uses three novel techniques to reduce energy consumption and support self-configuration To reduce energy consumption in listening to an idle channel, nodes periodically sleep Neighboring nodes form virtual clusters to auto-synchronize on sleep schedules Inspired by PAMAS, S-MAC also sets the radio to sleep during transmissions of other nodes Unlike PAMAS, it only uses in-channel signaling Finally, S-MAC applies message passing to reduce contention latency for sensor-network applications that require store-and-forward processing as data move through the network We evaluate our implementation of S-MAC over a sample sensor node, the Mote, developed at University of California, Berkeley The experiment results show that, on a source node, an 80211-like MAC consumes 2-6 times more energy than S-MAC for traffic load with messages sent every 1-10 s

5,094 citations


"E-MiLi: energy-minimizing idle list..." refers methods in this paper

  • ...In sensor networks, a popular MAC-layer energy saving mechanism is LPL, which is used by S-MAC [32], B-MAC [33] and many derivatives....

    [...]


Proceedings ArticleDOI
03 Nov 2004
TL;DR: B-MAC's flexibility results in better packet delivery rates, throughput, latency, and energy consumption than S-MAC, and the need for flexible protocols to effectively realize energy efficient sensor network applications is illustrated.
Abstract: We propose B-MAC, a carrier sense media access protocol for wireless sensor networks that provides a flexible interface to obtain ultra low power operation, effective collision avoidance, and high channel utilization. To achieve low power operation, B-MAC employs an adaptive preamble sampling scheme to reduce duty cycle and minimize idle listening. B-MAC supports on-the-fly reconfiguration and provides bidirectional interfaces for system services to optimize performance, whether it be for throughput, latency, or power conservation. We build an analytical model of a class of sensor network applications. We use the model to show the effect of changing B-MAC's parameters and predict the behavior of sensor network applications. By comparing B-MAC to conventional 802.11-inspired protocols, specifically SMAC, we develop an experimental characterization of B-MAC over a wide range of network conditions. We show that B-MAC's flexibility results in better packet delivery rates, throughput, latency, and energy consumption than S-MAC. By deploying a real world monitoring application with multihop networking, we validate our protocol design and model. Our results illustrate the need for flexible protocols to effectively realize energy efficient sensor network applications.

3,557 citations


"E-MiLi: energy-minimizing idle list..." refers methods in this paper

  • ...In sensor networks, a popular MAC-layer energy saving mechanism is LPL, which is used by S-MAC [32], B-MAC [33] and many derivatives....

    [...]


Proceedings ArticleDOI
23 Sep 2002
TL;DR: This paper introduces a technique to increase the battery lifetime of a PDA-based phone by reducing its idle power, the power a device consumes in a "standby" state and shows that it can provide a significant lifetime improvement over other technologies.
Abstract: The demand for an all-in-one phone with integrated personal information management and data access capabilities is beginning to accelerate. While personal digital assistants (PDAs) with built-in cellular, WiFi, and Voice-Over-IP technologies have the ability to serve these needs in a single package, the rate at which energy is consumed by PDA-based phones is very high. Thus, these devices can quickly drain their own batteries and become useless to their owner.In this paper, we introduce a technique to increase the battery lifetime of a PDA-based phone by reducing its idle power, the power a device consumes in a "standby" state. To reduce the idle power, we essentially shut down the device and its wireless network card when the device is not being used---the device is powered only when an incoming call is received. Using this technique, we can increase the battery lifetime by up to 115%.In this paper, we describe the design of our "wake-on-wireless" energy-saving strategy and the prototype device we implemented. To evaluate our technique, we compare it with alternative approaches. Our results show that our technique can provide a significant lifetime improvement over other technologies.

856 citations


"E-MiLi: energy-minimizing idle list..." refers background in this paper

  • ...The wake-on-wireless scheme [26] augments a secondary low-power radio for packet detection, and triggers the primary receiver only when a new packet arrives....

    [...]


Book
01 Jan 1996

679 citations