scispace - formally typeset
Journal ArticleDOI

Economics of additive manufacturing for end-usable metal parts

Reads0
Chats0
TLDR
In this paper, a comparison between two different technologies for metal part fabrication, the traditional high-pressure die-casting and the direct metal laser sintering additive technique, is done with consideration of both the geometric possibilities of AM and the economic point of view.
Abstract
Additive manufacturing (AM) of metal parts combined with part redesign has a positive repercussion on cost saving. In fact, a remarkable cost reduction can be obtained if the component shape is modified to exploit AM potentialities. This paper deals with the evaluation of the production volume for which AM techniques result competitive with respect to conventional processes for the production of end-usable metal parts. For this purpose, a comparison between two different technologies for metal part fabrication, the traditional high-pressure die-casting and the direct metal laser sintering additive technique, is done with consideration of both the geometric possibilities of AM and the economic point of view. A design for additive manufacturing approach is adopted. Costs models of both processes are identified and then applied to an aeronautical component selected as case study. This research evidences that currently additive techniques can be economically convenient and competitive to traditional processes for small to medium batch production of metal parts.

read more

Citations
More filters

Kan additiva tillverkningsmetoder användas vid direkttillverkning med metall som bas

Abstract: Our works purpose has been to analyze the possibilities, the obstacles and liabilities for Additive manufacturing (AM) with metal as material for use in direct manufacturing with batch production. AM allows the user to manufacture objects with high geometrical complicity, which manufacturability may be severely limited, or even impossible, while using traditional manufacturing techniques. AM with metal as material also allows the user to manufacture object with internal structures such as lattice and honeycomb structures. The use of AM for metal differs a lot depending on which of the many technique that is being used, but the main principle is the layer based manufacturing from a three dimensional file, usually a CAD-file, is the same for all methods. To be able to analyze the subject we have studied it mostly from a technical, but also, economical and knowledge based perspective to be able to see the full dimensions of the subject. The focus in the technical parts of our work has been on a family of AM methods called Powder Bed Fusion because we found them particularly interesting to be able to answer the question which we try to answer with our bachelor thesis. We have also discussed the lack of standardization of AM with metal and the standardization process that now is in progress. Comparisons with conventional manufacturing techniques main strengths and weaknesses was also carried out, to get a more complete answer to the thesis questions that we were trying to answer with our work. Our conclusions shows that AM with metal as building material currently have limited uses from an economical and technical perspective, mainly for small parts with complex geometry despite the many advantages that the technology possesses preferably in produced in small batches due to economic aspects. The development of AM with metal as building material is rapid however, and therefore there are some areas where AM might be deployed on a broad scale. With our work we also examined the possibility to use AM as a part of a future supply chain management strategy, and the possibility to use AM to quickly be able to start producing products before full scale production, with conventional methods can commence.
Journal ArticleDOI

Solid-State Cold Spray Additive Manufacturing of Ni-Based Superalloys: Processing–Microstructure–Property Relationships

TL;DR: In this paper , a detailed review of the post-processing techniques for Ni-based superalloy fabrication and its structural performance has been presented, based on this knowledge, the key structure-property mechanisms of CS Ni superalloys are elucidated with suggestions on how knowledge gaps in the field can be filled in the near future.
Journal ArticleDOI

Evaluating gas-driven flow mechanics of non-spherical powders for directed energy deposition

TL;DR: In this paper , the authors investigate the mechanics of carrier-gas driven powder flows for non-spherical metal powders using coupled experiments and numerical simulations, and suggest suitable process modifications (gas flow rate, feed rate, axis traverse speed) to facilitate the use of nonspherical powders alongside conventional spherical particles in DED processes.
References
More filters
Book

Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing

TL;DR: Gibson et al. as discussed by the authors presented a comprehensive overview of additive manufacturing technologies plus descriptions of support technologies like software systems and post-processing approaches, and provided systematic solutions for process selection and design for AM Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing.
BookDOI

Rapid manufacturing : an industrial revolution for the digital age

TL;DR: In this paper, the authors present a discussion of the potential of rapid manufacturing in the automotive industry and present a case study of how to modify a garden fork handle in order to make it more efficient.
Journal ArticleDOI

Rapid Manufacturing of Metal Components by Laser Forming

TL;DR: In this article, the main driving force of rapid prototyping or layer manufacturing techniques changed from fabrication of prototypes to rapid tooling (RT) and rapid manufacturing (RM), and nowadays, the direct fabrication of functional or structural end-use products made by layer manufacturing methods, i.e. RM, is the main trend.
Book ChapterDOI

Design for Additive Manufacturing

TL;DR: In this article, the capabilities of additive manufacturing technologies provide an opportunity to rethink DFM to take advantage of the unique capabilities of these technologies, and several companies are now using AM technologies for production manufacturing.
Journal ArticleDOI

Cost estimation for rapid manufacturing - laser sintering production for low to medium volumes:

TL;DR: In this article, a cost model for laser sintering is proposed, which leads to graph profiles that are typical for layer-by-layer manufacturing processes, and the evolution of cost models and the indirect cost significance in modern costing representation is shown.
Related Papers (5)