scispace - formally typeset
Journal ArticleDOI

Effects of climate and atmospheric CO2 partial pressure on the global distribution of C4 grasses: present, past, and future

Reads0
Chats0
TLDR
This analysis predicts substantial expansion of C4 vegetation – particularly in Asia, despite cooler temperatures, which is expected to result in double the current pCO2 by sometime in the next century, with some associated climate warming.
Abstract
C4 photosynthetic physiologies exhibit fundamentally different responses to temperature and atmospheric CO2 partial pressures (pCO2) compared to the evolutionarily more primitive C3 type. All else being equal, C4 plants tend to be favored over C3 plants in warm humid climates and, conversely, C3 plants tend to be favored over C4 plants in cool climates. Empirical observations supported by a photosynthesis model predict the existence of a climatological crossover temperature above which C4 species have a carbon gain advantage and below which C3 species are favored. Model calculations and analysis of current plant distribution suggest that this pCO2-dependent crossover temperature is approximated by a mean temperature of 22°C for the warmest month at the current pCO2 (35 Pa). In addition to favorable temperatures, C4 plants require sufficient precipitation during the warm growing season. C4 plants which are predominantly graminoids of short stature can be competitively excluded by trees (nearly all C3 plants) - regardless of the photosynthetic superiority of the C4 pathway - in regions otherwise favorable for C4. To construct global maps of the distribution of C4 grasses for current, past and future climate scenarios, we make use of climatological data sets which provide estimates of the mean monthly temperature to classify the globe into areas which should favor C4 photosynthesis during at least 1 month of the year. This area is further screened by excluding areas where precipitation is <25 mm per month during the warm season and by selecting areas classified as grasslands (i.e., excluding areas dominated by woody vegetation) according to a global vegetation map. Using this approach, grasslands of the world are designated as C3, C4, and mixed under current climate and pCO2. Published floristic studies were used to test the accuracy of these predictions in many regions of the world, and agreement with observations was generally good. We then make use of this protocol to examine changes in the global abundance of C4 grasses in the past and the future using plausible estimates for the climates and pCO2. When pCO2 is lowered to pre-industrial levels, C4 grasses expanded their range into large areas now classified as C3 grasslands, especially in North America and Eurasia. During the last glacial maximum (∼18 ka BP) when the climate was cooler and pCO2 was about 20 Pa, our analysis predicts substantial expansion of C4 vegetation - particularly in Asia, despite cooler temperatures. Continued use of fossil fuels is expected to result in double the current pCO2 by sometime in the next century, with some associated climate warming. Our analysis predicts a substantial reduction in the area of C4 grasses under these conditions. These reductions from the past and into the future are based on greater stimulation of C3 photosynthetic efficiency by higher pCO2 than inhibition by higher temperatures. The predictions are testable through large-scale controlled growth studies and analysis of stable isotopes and other data from regions where large changes are predicted to have occurred.

read more

Citations
More filters
Journal ArticleDOI

Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000

TL;DR: In this paper, the authors present land use data sets created by combining national, state, and county level census statistics with a recently updated global data set of croplands on a 5 min by 5 min (∼10 km by 10 km) latitude-longitude grid.
Book Chapter

The Carbon Cycle and Atmospheric Carbon Dioxide

TL;DR: Contributing Authors D.R.A. Archer, M.M.P. Keeling, D.D.F. Weirig, T. Whorf, A.C. Sitch, R.J. Rayner, S.Q. Tans, H. Yool.
Journal ArticleDOI

The evolution of C4 photosynthesis

TL;DR: Gene duplication followed by neo- and nonfunctionalization are the leading mechanisms for creating C4 genomes, with selection for carbon conservation traits under conditions promoting high photorespiration being the ultimate factor behind the origin of C4 photosynthesis.
Book

Ecological Climatology: Concepts and Applications

TL;DR: The third edition of Gordon Bonan's comprehensive textbook introduces an interdisciplinary framework to understand the interaction between terrestrial ecosystems and climate change as discussed by the authors, which is suitable for advanced undergraduate and graduate students studying ecology, environmental science, atmospheric science, and geography.
Journal ArticleDOI

Global distribution of C3 and C4 vegetation: Carbon cycle implications

TL;DR: In this article, the authors developed an approach for capturing the heterogeneity by combining remote sensing products, physiological modeling, a spatial distribution of global crop fractions, and national harvest area data for major crop types.
References
More filters
Journal ArticleDOI

A Biochemical Model of Photosynthetic CO 2 Assimilation in Leaves of C 3 Species

TL;DR: Various aspects of the biochemistry of photosynthetic carbon assimilation in C3 plants are integrated into a form compatible with studies of gas exchange in leaves.
Journal ArticleDOI

On the Relationship Between Carbon Isotope Discrimination and the Intercellular Carbon Dioxide Concentration in Leaves

TL;DR: It is shown how diffusion of gaseous COz can significantly affect carbon isotopic discrimination and a simple relationship between discrimination and the ratio of the intercellular and atmospheric partial pressures of COZ is developed.
Journal ArticleDOI

Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer

TL;DR: In this article, a system of models for the simulation of gas and energy exchange of a leaf of a C3 plant in free air is presented, where the physiological processes are simulated by sub-models that: (a) give net photosynthesis (An) as a function of environmental and leaf parameters and stomatal conductance (gs); (b) give g, as well as the concentration of CO2 and H2O in air at the leaf surface and the current rate of photosynthesis of the leaf.
Journal ArticleDOI

A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMS. Part I: Model Formulation

TL;DR: In this paper, a revised version of the Simple Biosphere model (SiB2) is presented, incorporating a realistic canopy photosynthesis-conductance model to describe the simultaneous transfer of CO2 and water vapor into and out of the vegetation, respectively.
Journal ArticleDOI

Vostok ice core provides 160,000-year record of atmospheric CO2

TL;DR: In this article, direct evidence of past atmospheric CO2 changes has been extended to the past 160,000 years from the Vostok ice core, showing an inherent phenomenon of change between glacial and interglacial periods.
Related Papers (5)