scispace - formally typeset
Open AccessBook Chapter

The Carbon Cycle and Atmospheric Carbon Dioxide

TLDR
Contributing Authors D.R.A. Archer, M.M.P. Keeling, D.D.F. Weirig, T. Whorf, A.C. Sitch, R.J. Rayner, S.Q. Tans, H. Yool.
Abstract
Contributing Authors D. Archer, M.R. Ashmore, O. Aumont, D. Baker, M. Battle, M. Bender, L.P. Bopp, P. Bousquet, K. Caldeira, P. Ciais, P.M. Cox, W. Cramer, F. Dentener, I.G. Enting, C.B. Field, P. Friedlingstein, E.A. Holland, R.A. Houghton, J.I. House, A. Ishida, A.K. Jain, I.A. Janssens, F. Joos, T. Kaminski, C.D. Keeling, R.F. Keeling, D.W. Kicklighter, K.E. Kohfeld, W. Knorr, R. Law, T. Lenton, K. Lindsay, E. Maier-Reimer, A.C. Manning, R.J. Matear, A.D. McGuire, J.M. Melillo, R. Meyer, M. Mund, J.C. Orr, S. Piper, K. Plattner, P.J. Rayner, S. Sitch, R. Slater, S. Taguchi, P.P. Tans, H.Q. Tian, M.F. Weirig, T. Whorf, A. Yool

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget

TL;DR: In this paper, the role of inland water ecosystems in the global carbon cycle has been investigated and it is shown that roughly twice as much C enters inland aquatic systems from land as is exported from land to the sea, roughly equally as inorganic and organic carbon.
Journal ArticleDOI

What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2.

TL;DR: The results from this review may provide the most plausible estimates of how plants in their native environments and field-grown crops will respond to rising atmospheric [CO(2)]; but even with FACE there are limitations, which are discussed.
Book

Principles of Terrestrial Ecosystem Ecology

TL;DR: In this paper, the Ecosystem Concept is used to describe the Earth's Climate System and Geology and Soils, and the ecosystem concept is used for managing and sustaining ecosystems.
Journal ArticleDOI

Stabilization Wedges: Solving the Climate Problem for the Next 50 Years with Current Technologies

TL;DR: A portfolio of technologies now exists to meet the world's energy needs over the next 50 years and limit atmospheric CO 2 to a trajectory that avoids a doubling of the preindustrial concentration as mentioned in this paper.
References
More filters
Journal ArticleDOI

A Biochemical Model of Photosynthetic CO 2 Assimilation in Leaves of C 3 Species

TL;DR: Various aspects of the biochemistry of photosynthetic carbon assimilation in C3 plants are integrated into a form compatible with studies of gas exchange in leaves.
Journal ArticleDOI

Human alteration of the global nitrogen cycle: sources and consequences

TL;DR: In this article, a review of available scientific evidence shows that human alterations of the nitrogen cycle have approximately doubled the rate of nitrogen input into the terrestrial nitrogen cycle, with these rates still increasing; increased concentrations of the potent greenhouse gas N 2O globally, and increased concentration of other oxides of nitrogen that drive the formation of photochemical smog over large regions of Earth.

Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica

TL;DR: The recent completion of drilling at Vostok station in East Antarctica has allowed the extension of the ice record of atmospheric composition and climate to the past four glacial-interglacial cycles.
Journal ArticleDOI

Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica

TL;DR: The recent completion of drilling at Vostok station in East Antarctica has allowed the extension of the ice record of atmospheric composition and climate to the past four glacial-interglacial cycles as discussed by the authors.
Related Papers (5)