scispace - formally typeset
Open AccessJournal ArticleDOI

EGFR mutation testing in lung cancer: a review of available methods and their use for analysis of tumour tissue and cytology samples

TLDR
Cytology samples including fine needle aspirate and pleural effusion can be used successfully to determine EGFR mutation status provided that sensitive testing methods are employed, and several different testing methods offer a more sensitive alternative to direct sequencing for the detection of common EGFR mutations.
Abstract
Aims Activating mutations in the gene encoding epidermal growth factor receptor (EGFR) can confer sensitivity to EGFR tyrosine kinase inhibitors such as gefitinib in patients with advanced non-small-cell lung cancer. Testing for mutations in EGFR is therefore an important step in the treatment-decision pathway. We reviewed reported methods for EGFR mutation testing in patients with lung cancer, initially focusing on studies involving standard tumour tissue samples. We also evaluated data on the use of cytology samples in order to determine their suitability for EGFR mutation analysis. Methods We searched the MEDLINE database for studies reporting on EGFR mutation testing methods in patients with lung cancer. Results Various methods have been investigated as potential alternatives to the historical standard for EGFR mutation testing, direct DNA sequencing. Many of these are targeted methods that specifically detect the most common EGFR mutations. The development of targeted mutation testing methods and commercially available test kits has enabled sensitive, rapid and robust analysis of clinical samples. The use of screening methods, subsequent to sample micro dissection, has also ensured that identification of more rare, uncommon mutations is now feasible. Cytology samples including fine needle aspirate and pleural effusion can be used successfully to determine EGFR mutation status provided that sensitive testing methods are employed. Conclusions Several different testing methods offer a more sensitive alternative to direct sequencing for the detection of common EGFR mutations. Evidence published to date suggests cytology samples are viable alternatives for mutation testing when tumour tissue samples are not available.

read more

Citations
More filters
Journal ArticleDOI

The Era of Radiogenomics in Precision Medicine: An Emerging Approach to Support Diagnosis, Treatment Decisions, and Prognostication in Oncology.

TL;DR: For example, Radiogenomics combines a large volume of quantitative data extracted from medical images with individual genomic phenotypes and constructs a prediction model through deep learning to stratify patients, guide therapeutic strategies, and evaluate clinical outcomes as mentioned in this paper.
Journal ArticleDOI

Efficiency of the Therascreen® RGQ PCR kit for the detection of EGFR mutations in non-small cell lung carcinomas.

TL;DR: The Therascreen® EGFR RGQ kit was found to be very powerful for the detection of the most frequent EGFR alterations that are clearly associated with response to tyrosine kinase inhibitors.
Journal ArticleDOI

CT characteristics of non-small cell lung cancer with epidermal growth factor receptor mutation: a systematic review and meta-analysis.

TL;DR: It is demonstrated that NSCLC with CT morphological features of part-solid GGO tended to be EGFR mutated, which might provide an important clue for the correct selection of patients treated with molecular targeted therapies.
References
More filters
Journal ArticleDOI

Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008.

TL;DR: The results for 20 world regions are presented, summarizing the global patterns for the eight most common cancers, and striking differences in the patterns of cancer from region to region are observed.
Journal ArticleDOI

Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib

TL;DR: A subgroup of patients with non-small-cell lung cancer have specific mutations in the EGFR gene which correlate with clinical responsiveness to the tyrosine kinase inhibitor gefitinib, and these mutations lead to increased growth factor signaling and confer susceptibility to the inhibitor.
Related Papers (5)