scispace - formally typeset
Open AccessJournal ArticleDOI

Electric-field sensing using single diamond spins

Reads0
Chats0
TLDR
In this paper, point defects in diamond known as nitrogen-vacancy centres have been shown to be sensitive to minute magnetic fields, even at room temperature, and a demonstration that the spin associated with these defect centres is also sensitive to electric fields holds out the prospect of a sensor that can resolve single spins and single elementary charges at the nanoscale.
Abstract
Point defects in diamond known as nitrogen-vacancy centres have been shown to be sensitive to minute magnetic fields, even at room temperature. A demonstration that the spin associated with these defect centres is also sensitive to electric fields holds out the prospect of a sensor that can resolve, under ambient conditions, single spins and single elementary charges at the nanoscale.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Quantum sensing

Abstract: "Quantum sensing" describes the use of a quantum system, quantum properties or quantum phenomena to perform a measurement of a physical quantity Historical examples of quantum sensors include magnetometers based on superconducting quantum interference devices and atomic vapors, or atomic clocks More recently, quantum sensing has become a distinct and rapidly growing branch of research within the area of quantum science and technology, with the most common platforms being spin qubits, trapped ions and flux qubits The field is expected to provide new opportunities - especially with regard to high sensitivity and precision - in applied physics and other areas of science In this review, we provide an introduction to the basic principles, methods and concepts of quantum sensing from the viewpoint of the interested experimentalist
Journal ArticleDOI

Nanometre-scale thermometry in a living cell

TL;DR: A new approach to nanoscale thermometry is demonstrated that uses coherent manipulation of the electronic spin associated with nitrogen–vacancy colour centres in diamond to detect temperature variations as small as 1.8 mK in an ultrapure bulk diamond sample and demonstrate temperature-gradient control and mapping at the subcellular level.
Journal ArticleDOI

Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems

TL;DR: Hybrid quantum circuits combine two or more physical systems, with the goal of harnessing the advantages and strengths of the different systems in order to better explore new phenomena and potentially bring about novel quantum technologies as discussed by the authors.
Journal ArticleDOI

Nitrogen-Vacancy Centers in Diamond: Nanoscale Sensors for Physics and Biology

TL;DR: A concise overview of the basic properties of diamond, from synthesis to electronic and magnetic properties of embedded NV centers, and how single NV centers can be harnessed for nanoscale sensing are described, including the physical quantities that may be detected, expected sensitivities, and the most common measurement protocols.
Journal ArticleDOI

Magnetometry with nitrogen-vacancy defects in diamond

TL;DR: The physical principles that allow for magnetic field detection with NV centres are presented and first applications of NV magnetometers that have been demonstrated in the context of nano magnetism, mesoscopic physics and the life sciences are discussed.
References
More filters
Journal ArticleDOI

Quantum Computing

TL;DR: A number of physical systems, spanning much of modern physics, are being developed for this task, ranging from single particles of light to superconducting circuits, and it is not yet clear which, if any, will ultimately prove successful as discussed by the authors.
Journal ArticleDOI

Nanoscale magnetic sensing with an individual electronic spin in diamond

TL;DR: An approach to nanoscale magnetic sensing is experimentally demonstrated, using coherent manipulation of an individual electronic spin qubit associated with a nitrogen-vacancy impurity in diamond at room temperature to achieve detection of 3 nT magnetic fields at kilohertz frequencies after 100 s of averaging.
Journal ArticleDOI

Nanoscale imaging magnetometry with diamond spins under ambient conditions

TL;DR: This work shows how magneto-optical spin detection can be used to determine the location of a spin associated with a single nitrogen-vacancy centre in diamond with nanometre resolution under ambient conditions, and demonstrates the use of a single diamond spin as a scanning probe magnetometer to map nanoscale magnetic field variations.
Journal ArticleDOI

Ultralong spin coherence time in isotopically engineered diamond

TL;DR: Here, it is demonstrated the synthesis and application of ultrapure isotopically controlled single-crystal chemical vapour deposition (CVD) diamond with a remarkably low concentration of paramagnetic impurities, and single electron spins show the longest room-temperature spin dephasing times ever observed in solid-state systems.
Journal ArticleDOI

High-sensitivity diamond magnetometer with nanoscale resolution

TL;DR: In this paper, the use of diamond impurity centres as magnetic field sensors is explored, promising a new approach to single-spin detection and magnetic-field imaging at the nanoscale.
Related Papers (5)