scispace - formally typeset
Open AccessBook

Electronic Properties of Doped Semiconductors

TLDR
In the last fifteen years, there has been a noticeable shift towards impure semiconductors -a shift which came about because it is precisely the impurities that are essential to a number of major semiconductor devices as discussed by the authors.
Abstract
First-generation semiconductors could not be properly termed "doped- they were simply very impure. Uncontrolled impurities hindered the discovery of physical laws, baffling researchers and evoking pessimism and derision in advocates of the burgeoning "pure" physical disciplines. The eventual banish ment of the "dirt" heralded a new era in semiconductor physics, an era that had "purity" as its motto. It was this era that yielded the successes of the 1950s and brought about a new technology of "semiconductor electronics." Experiments with pure crystals provided a powerful stimulus to the develop ment of semiconductor theory. New methods and theories were developed and tested: the effective-mass method for complex bands, the theory of impurity states, and the theory of kinetic phenomena. These developments constitute what is now known as semiconductor phys ics. In the last fifteen years, however, there has been a noticeable shift towards impure semiconductors - a shift which came about because it is precisely the impurities that are essential to a number of major semiconductor devices. Technology needs impure semiconductors, which unlike the first-generation items, are termed "doped" rather than "impure" to indicate that the impurity levels can now be controlled to a certain extent."

read more

Citations
More filters
Journal ArticleDOI

Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications

TL;DR: Nanocrystals (NCs) discussed in this Review are tiny crystals of metals, semiconductors, and magnetic material consisting of hundreds to a few thousand atoms each that are among the hottest research topics of the last decades.
Journal ArticleDOI

Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states

TL;DR: In this paper, it was shown that in the absence of coupling of the electrons to any external bath dc electrical conductivity exactly vanishes as long as the temperature T does not exceed some finite value Tc.
Journal ArticleDOI

Gate-induced insulating state in bilayer graphene devices

TL;DR: This work demonstrates the controlled induction of an insulating state--with large suppression of the conductivity--in bilayer graphene, by using a double-gate device configuration that enables an electric field to be applied perpendicular to the plane.
Journal ArticleDOI

Interacting electrons in disordered wires: Anderson localization and low-T transport

TL;DR: The conductivity sigma(T) of interacting electrons in a low-dimensional disordered system at low temperature T is studied, finding the mechanism of transport in the critical regime is many-particle transitions between distant states in Fock space.
Journal ArticleDOI

Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films

TL;DR: In this article, alternating current and direct current (DC) conductivities have been measured in polymer-nanotube composite thin films for a range of concentrations of multi-wall nanotubes in two polymer hosts.